LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhesvxx()

subroutine zhesvxx ( character fact,
character uplo,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
character equed,
double precision, dimension( * ) s,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx, * ) x,
integer ldx,
double precision rcond,
double precision rpvgrw,
double precision, dimension( * ) berr,
integer n_err_bnds,
double precision, dimension( nrhs, * ) err_bnds_norm,
double precision, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
double precision, dimension( * ) params,
complex*16, dimension( * ) work,
double precision, dimension( * ) rwork,
integer info )

ZHESVXX computes the solution to system of linear equations A * X = B for HE matrices

Download ZHESVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    ZHESVXX uses the diagonal pivoting factorization to compute the
!>    solution to a complex*16 system of linear equations A * X = B, where
!>    A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
!>    matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. ZHESVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    ZHESVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    ZHESVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what ZHESVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
!>    the system:
!>
!>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>       A = U * D * U**T,  if UPLO = 'U', or
!>       A = L * D * L**T,  if UPLO = 'L',
!>
!>    where U (or L) is a product of permutation and unit upper (lower)
!>    triangular matrices, and D is Hermitian and block diagonal with
!>    1-by-1 and 2-by-2 diagonal blocks.
!>
!>    3. If some D(i,i)=0, so that D is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND).  If the reciprocal of the condition number is
!>    less than machine precision, the routine still goes on to solve
!>    for X and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(R) so that it solves the original system before
!>    equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by S.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>       = 'U':  Upper triangle of A is stored;
!>       = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>     The Hermitian matrix A.  If UPLO = 'U', the leading N-by-N
!>     upper triangular part of A contains the upper triangular
!>     part of the matrix A, and the strictly lower triangular
!>     part of A is not referenced.  If UPLO = 'L', the leading
!>     N-by-N lower triangular part of A contains the lower
!>     triangular part of the matrix A, and the strictly upper
!>     triangular part of A is not referenced.
!>
!>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
!>     diag(S)*A*diag(S).
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is COMPLEX*16 array, dimension (LDAF,N)
!>     If FACT = 'F', then AF is an input argument and on entry
!>     contains the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**H or A = L*D*L**H as computed by ZHETRF.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**H or A = L*D*L**H.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains details of the interchanges and the block
!>     structure of D, as determined by ZHETRF.  If IPIV(k) > 0,
!>     then rows and columns k and IPIV(k) were interchanged and
!>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
!>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
!>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
!>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
!>     then rows and columns k+1 and -IPIV(k) were interchanged
!>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains details of the interchanges and the block
!>     structure of D, as determined by ZHETRF.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'Y':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(S) * A * diag(S).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]S
!>          S is DOUBLE PRECISION array, dimension (N)
!>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
!>     the left and right by diag(S).  S is an input argument if FACT =
!>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
!>     = 'Y', each element of S must be positive.  If S is output, each
!>     element of S is a power of the radix. If S is input, each element
!>     of S should be a power of the radix to ensure a reliable solution
!>     and error estimates. Scaling by powers of the radix does not cause
!>     rounding errors unless the result underflows or overflows.
!>     Rounding errors during scaling lead to refining with a matrix that
!>     is not equivalent to the input matrix, producing error estimates
!>     that may not be reliable.
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if EQUED = 'Y', B is overwritten by diag(S)*B;
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is COMPLEX*16 array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit if
!>     EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(S))*X.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is DOUBLE PRECISION
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is DOUBLE PRECISION
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.
!> 
[out]BERR
!>          BERR is DOUBLE PRECISION array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * dlamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * dlamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * dlamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is DOUBLE PRECISION array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0D+0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the extra-precise refinement algorithm.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (5*N)
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (2*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 500 of file zhesvxx.f.

505*
506* -- LAPACK driver routine --
507* -- LAPACK is a software package provided by Univ. of Tennessee, --
508* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
509*
510* .. Scalar Arguments ..
511 CHARACTER EQUED, FACT, UPLO
512 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
513 $ N_ERR_BNDS
514 DOUBLE PRECISION RCOND, RPVGRW
515* ..
516* .. Array Arguments ..
517 INTEGER IPIV( * )
518 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
519 $ WORK( * ), X( LDX, * )
520 DOUBLE PRECISION S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
521 $ ERR_BNDS_NORM( NRHS, * ),
522 $ ERR_BNDS_COMP( NRHS, * )
523* ..
524*
525* ==================================================================
526*
527* .. Parameters ..
528 DOUBLE PRECISION ZERO, ONE
529 parameter( zero = 0.0d+0, one = 1.0d+0 )
530 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
531 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
532 INTEGER CMP_ERR_I, PIV_GROWTH_I
533 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
534 $ berr_i = 3 )
535 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
536 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
537 $ piv_growth_i = 9 )
538* ..
539* .. Local Scalars ..
540 LOGICAL EQUIL, NOFACT, RCEQU
541 INTEGER INFEQU, J
542 DOUBLE PRECISION AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
543* ..
544* .. External Functions ..
545 EXTERNAL lsame, dlamch, zla_herpvgrw
546 LOGICAL LSAME
547 DOUBLE PRECISION DLAMCH, ZLA_HERPVGRW
548* ..
549* .. External Subroutines ..
550 EXTERNAL zheequb, zhetrf, zhetrs, zlacpy,
552* ..
553* .. Intrinsic Functions ..
554 INTRINSIC max, min
555* ..
556* .. Executable Statements ..
557*
558 info = 0
559 nofact = lsame( fact, 'N' )
560 equil = lsame( fact, 'E' )
561 smlnum = dlamch( 'Safe minimum' )
562 bignum = one / smlnum
563 IF( nofact .OR. equil ) THEN
564 equed = 'N'
565 rcequ = .false.
566 ELSE
567 rcequ = lsame( equed, 'Y' )
568 ENDIF
569*
570* Default is failure. If an input parameter is wrong or
571* factorization fails, make everything look horrible. Only the
572* pivot growth is set here, the rest is initialized in ZHERFSX.
573*
574 rpvgrw = zero
575*
576* Test the input parameters. PARAMS is not tested until ZHERFSX.
577*
578 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
579 $ lsame( fact, 'F' ) ) THEN
580 info = -1
581 ELSE IF( .NOT.lsame( uplo, 'U' ) .AND.
582 $ .NOT.lsame( uplo, 'L' ) ) THEN
583 info = -2
584 ELSE IF( n.LT.0 ) THEN
585 info = -3
586 ELSE IF( nrhs.LT.0 ) THEN
587 info = -4
588 ELSE IF( lda.LT.max( 1, n ) ) THEN
589 info = -6
590 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
591 info = -8
592 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
593 $ ( rcequ .OR. lsame( equed, 'N' ) ) ) THEN
594 info = -9
595 ELSE
596 IF ( rcequ ) THEN
597 smin = bignum
598 smax = zero
599 DO 10 j = 1, n
600 smin = min( smin, s( j ) )
601 smax = max( smax, s( j ) )
602 10 CONTINUE
603 IF( smin.LE.zero ) THEN
604 info = -10
605 ELSE IF( n.GT.0 ) THEN
606 scond = max( smin, smlnum ) / min( smax, bignum )
607 ELSE
608 scond = one
609 END IF
610 END IF
611 IF( info.EQ.0 ) THEN
612 IF( ldb.LT.max( 1, n ) ) THEN
613 info = -12
614 ELSE IF( ldx.LT.max( 1, n ) ) THEN
615 info = -14
616 END IF
617 END IF
618 END IF
619*
620 IF( info.NE.0 ) THEN
621 CALL xerbla( 'ZHESVXX', -info )
622 RETURN
623 END IF
624*
625 IF( equil ) THEN
626*
627* Compute row and column scalings to equilibrate the matrix A.
628*
629 CALL zheequb( uplo, n, a, lda, s, scond, amax, work,
630 $ infequ )
631 IF( infequ.EQ.0 ) THEN
632*
633* Equilibrate the matrix.
634*
635 CALL zlaqhe( uplo, n, a, lda, s, scond, amax, equed )
636 rcequ = lsame( equed, 'Y' )
637 END IF
638 END IF
639*
640* Scale the right-hand side.
641*
642 IF( rcequ ) CALL zlascl2( n, nrhs, s, b, ldb )
643*
644 IF( nofact .OR. equil ) THEN
645*
646* Compute the LDL^H or UDU^H factorization of A.
647*
648 CALL zlacpy( uplo, n, n, a, lda, af, ldaf )
649 CALL zhetrf( uplo, n, af, ldaf, ipiv, work, 5*max(1,n),
650 $ info )
651*
652* Return if INFO is non-zero.
653*
654 IF( info.GT.0 ) THEN
655*
656* Pivot in column INFO is exactly 0
657* Compute the reciprocal pivot growth factor of the
658* leading rank-deficient INFO columns of A.
659*
660 IF( n.GT.0 )
661 $ rpvgrw = zla_herpvgrw( uplo, n, info, a, lda, af,
662 $ ldaf,
663 $ ipiv, rwork )
664 RETURN
665 END IF
666 END IF
667*
668* Compute the reciprocal pivot growth factor RPVGRW.
669*
670 IF( n.GT.0 )
671 $ rpvgrw = zla_herpvgrw( uplo, n, info, a, lda, af, ldaf,
672 $ ipiv,
673 $ rwork )
674*
675* Compute the solution matrix X.
676*
677 CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
678 CALL zhetrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
679*
680* Use iterative refinement to improve the computed solution and
681* compute error bounds and backward error estimates for it.
682*
683 CALL zherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
684 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
685 $ err_bnds_comp, nparams, params, work, rwork, info )
686*
687* Scale solutions.
688*
689 IF ( rcequ ) THEN
690 CALL zlascl2 ( n, nrhs, s, x, ldx )
691 END IF
692*
693 RETURN
694*
695* End of ZHESVXX
696*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zheequb(uplo, n, a, lda, s, scond, amax, work, info)
ZHEEQUB
Definition zheequb.f:131
subroutine zherfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZHERFSX
Definition zherfsx.f:400
subroutine zhetrf(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRF
Definition zhetrf.f:175
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
Definition zhetrs.f:118
double precision function zla_herpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
ZLA_HERPVGRW
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
subroutine zlaqhe(uplo, n, a, lda, s, scond, amax, equed)
ZLAQHE scales a Hermitian matrix.
Definition zlaqhe.f:132
subroutine zlascl2(m, n, d, x, ldx)
ZLASCL2 performs diagonal scaling on a matrix.
Definition zlascl2.f:89
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: