LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine chsein | ( | character | side, |
character | eigsrc, | ||
character | initv, | ||
logical, dimension( * ) | select, | ||
integer | n, | ||
complex, dimension( ldh, * ) | h, | ||
integer | ldh, | ||
complex, dimension( * ) | w, | ||
complex, dimension( ldvl, * ) | vl, | ||
integer | ldvl, | ||
complex, dimension( ldvr, * ) | vr, | ||
integer | ldvr, | ||
integer | mm, | ||
integer | m, | ||
complex, dimension( * ) | work, | ||
real, dimension( * ) | rwork, | ||
integer, dimension( * ) | ifaill, | ||
integer, dimension( * ) | ifailr, | ||
integer | info ) |
CHSEIN
Download CHSEIN + dependencies [TGZ] [ZIP] [TXT]
!> !> CHSEIN uses inverse iteration to find specified right and/or left !> eigenvectors of a complex upper Hessenberg matrix H. !> !> The right eigenvector x and the left eigenvector y of the matrix H !> corresponding to an eigenvalue w are defined by: !> !> H * x = w * x, y**h * H = w * y**h !> !> where y**h denotes the conjugate transpose of the vector y. !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'R': compute right eigenvectors only; !> = 'L': compute left eigenvectors only; !> = 'B': compute both right and left eigenvectors. !> |
[in] | EIGSRC | !> EIGSRC is CHARACTER*1 !> Specifies the source of eigenvalues supplied in W: !> = 'Q': the eigenvalues were found using CHSEQR; thus, if !> H has zero subdiagonal elements, and so is !> block-triangular, then the j-th eigenvalue can be !> assumed to be an eigenvalue of the block containing !> the j-th row/column. This property allows CHSEIN to !> perform inverse iteration on just one diagonal block. !> = 'N': no assumptions are made on the correspondence !> between eigenvalues and diagonal blocks. In this !> case, CHSEIN must always perform inverse iteration !> using the whole matrix H. !> |
[in] | INITV | !> INITV is CHARACTER*1 !> = 'N': no initial vectors are supplied; !> = 'U': user-supplied initial vectors are stored in the arrays !> VL and/or VR. !> |
[in] | SELECT | !> SELECT is LOGICAL array, dimension (N) !> Specifies the eigenvectors to be computed. To select the !> eigenvector corresponding to the eigenvalue W(j), !> SELECT(j) must be set to .TRUE.. !> |
[in] | N | !> N is INTEGER !> The order of the matrix H. N >= 0. !> |
[in] | H | !> H is COMPLEX array, dimension (LDH,N) !> The upper Hessenberg matrix H. !> If a NaN is detected in H, the routine will return with INFO=-6. !> |
[in] | LDH | !> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !> |
[in,out] | W | !> W is COMPLEX array, dimension (N) !> On entry, the eigenvalues of H. !> On exit, the real parts of W may have been altered since !> close eigenvalues are perturbed slightly in searching for !> independent eigenvectors. !> |
[in,out] | VL | !> VL is COMPLEX array, dimension (LDVL,MM) !> On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must !> contain starting vectors for the inverse iteration for the !> left eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'L' or 'B', the left eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VL, in the same order as their eigenvalues. !> If SIDE = 'R', VL is not referenced. !> |
[in] | LDVL | !> LDVL is INTEGER !> The leading dimension of the array VL. !> LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. !> |
[in,out] | VR | !> VR is COMPLEX array, dimension (LDVR,MM) !> On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must !> contain starting vectors for the inverse iteration for the !> right eigenvectors; the starting vector for each eigenvector !> must be in the same column in which the eigenvector will be !> stored. !> On exit, if SIDE = 'R' or 'B', the right eigenvectors !> specified by SELECT will be stored consecutively in the !> columns of VR, in the same order as their eigenvalues. !> If SIDE = 'L', VR is not referenced. !> |
[in] | LDVR | !> LDVR is INTEGER !> The leading dimension of the array VR. !> LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. !> |
[in] | MM | !> MM is INTEGER !> The number of columns in the arrays VL and/or VR. MM >= M. !> |
[out] | M | !> M is INTEGER !> The number of columns in the arrays VL and/or VR required to !> store the eigenvectors (= the number of .TRUE. elements in !> SELECT). !> |
[out] | WORK | !> WORK is COMPLEX array, dimension (N*N) !> |
[out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
[out] | IFAILL | !> IFAILL is INTEGER array, dimension (MM) !> If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left !> eigenvector in the i-th column of VL (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'R', IFAILL is not referenced. !> |
[out] | IFAILR | !> IFAILR is INTEGER array, dimension (MM) !> If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right !> eigenvector in the i-th column of VR (corresponding to the !> eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the !> eigenvector converged satisfactorily. !> If SIDE = 'L', IFAILR is not referenced. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, i is the number of eigenvectors which !> failed to converge; see IFAILL and IFAILR for further !> details. !> |
!> !> Each eigenvector is normalized so that the element of largest !> magnitude has magnitude 1; here the magnitude of a complex number !> (x,y) is taken to be |x|+|y|. !>
Definition at line 240 of file chsein.f.