LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ ztptrs()

subroutine ztptrs ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
complex*16, dimension( * ) ap,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

ZTPTRS

Download ZTPTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZTPTRS solves a triangular system of the form !> !> A * X = B, A**T * X = B, or A**H * X = B, !> !> where A is a triangular matrix of order N stored in packed format, and B is an N-by-NRHS matrix. !> !> This subroutine verifies that A is nonsingular, but callers should note that only exact !> singularity is detected. It is conceivable for one or more diagonal elements of A to be !> subnormally tiny numbers without this subroutine signalling an error. !> !> If a possible loss of numerical precision due to near-singular matrices is a concern, the !> caller should verify that A is nonsingular within some tolerance before calling this subroutine. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> = 'U': A is upper triangular; !> = 'L': A is lower triangular. !>
[in]TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
[in]DIAG
!> DIAG is CHARACTER*1 !> = 'N': A is non-unit triangular; !> = 'U': A is unit triangular. !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
[in]AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> The upper or lower triangular matrix A, packed columnwise in !> a linear array. The j-th column of A is stored in the array !> AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. !>
[in,out]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> On entry, the right hand side matrix B. !> On exit, if INFO = 0, the solution matrix X. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, the i-th diagonal element of A is exactly zero, !> indicating that the matrix is singular and the !> solutions X have not been computed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 132 of file ztptrs.f.

134*
135* -- LAPACK computational routine --
136* -- LAPACK is a software package provided by Univ. of Tennessee, --
137* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138*
139* .. Scalar Arguments ..
140 CHARACTER DIAG, TRANS, UPLO
141 INTEGER INFO, LDB, N, NRHS
142* ..
143* .. Array Arguments ..
144 COMPLEX*16 AP( * ), B( LDB, * )
145* ..
146*
147* =====================================================================
148*
149* .. Parameters ..
150 COMPLEX*16 ZERO
151 parameter( zero = ( 0.0d+0, 0.0d+0 ) )
152* ..
153* .. Local Scalars ..
154 LOGICAL NOUNIT, UPPER
155 INTEGER J, JC
156* ..
157* .. External Functions ..
158 LOGICAL LSAME
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL xerbla, ztpsv
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC max
166* ..
167* .. Executable Statements ..
168*
169* Test the input parameters.
170*
171 info = 0
172 upper = lsame( uplo, 'U' )
173 nounit = lsame( diag, 'N' )
174 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
175 info = -1
176 ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
177 $ lsame( trans, 'T' ) .AND.
178 $ .NOT.lsame( trans, 'C' ) ) THEN
179 info = -2
180 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
181 info = -3
182 ELSE IF( n.LT.0 ) THEN
183 info = -4
184 ELSE IF( nrhs.LT.0 ) THEN
185 info = -5
186 ELSE IF( ldb.LT.max( 1, n ) ) THEN
187 info = -8
188 END IF
189 IF( info.NE.0 ) THEN
190 CALL xerbla( 'ZTPTRS', -info )
191 RETURN
192 END IF
193*
194* Quick return if possible
195*
196 IF( n.EQ.0 )
197 $ RETURN
198*
199* Check for singularity.
200*
201 IF( nounit ) THEN
202 IF( upper ) THEN
203 jc = 1
204 DO 10 info = 1, n
205 IF( ap( jc+info-1 ).EQ.zero )
206 $ RETURN
207 jc = jc + info
208 10 CONTINUE
209 ELSE
210 jc = 1
211 DO 20 info = 1, n
212 IF( ap( jc ).EQ.zero )
213 $ RETURN
214 jc = jc + n - info + 1
215 20 CONTINUE
216 END IF
217 END IF
218 info = 0
219*
220* Solve A * x = b, A**T * x = b, or A**H * x = b.
221*
222 DO 30 j = 1, nrhs
223 CALL ztpsv( uplo, trans, diag, n, ap, b( 1, j ), 1 )
224 30 CONTINUE
225*
226 RETURN
227*
228* End of ZTPTRS
229*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ztpsv(uplo, trans, diag, n, ap, x, incx)
ZTPSV
Definition ztpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: