LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctptrs()

subroutine ctptrs ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
complex, dimension( * ) ap,
complex, dimension( ldb, * ) b,
integer ldb,
integer info )

CTPTRS

Download CTPTRS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CTPTRS solves a triangular system of the form
!>
!>    A * X = B,  A**T * X = B,  or  A**H * X = B,
!>
!> where A is a triangular matrix of order N stored in packed format, and B is an N-by-NRHS matrix.
!>
!> This subroutine verifies that A is nonsingular, but callers should note that only exact
!> singularity is detected. It is conceivable for one or more diagonal elements of A to be
!> subnormally tiny numbers without this subroutine signalling an error.
!>
!> If a possible loss of numerical precision due to near-singular matrices is a concern, the
!> caller should verify that A is nonsingular within some tolerance before calling this subroutine.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations:
!>          = 'N':  A * X = B     (No transpose)
!>          = 'T':  A**T * X = B  (Transpose)
!>          = 'C':  A**H * X = B  (Conjugate transpose)
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          The upper or lower triangular matrix A, packed columnwise in
!>          a linear array.  The j-th column of A is stored in the array
!>          AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          On entry, the right hand side matrix B.
!>          On exit, if INFO = 0, the solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the i-th diagonal element of A is exactly zero,
!>                indicating that the matrix is singular and the
!>                solutions X have not been computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 132 of file ctptrs.f.

134*
135* -- LAPACK computational routine --
136* -- LAPACK is a software package provided by Univ. of Tennessee, --
137* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138*
139* .. Scalar Arguments ..
140 CHARACTER DIAG, TRANS, UPLO
141 INTEGER INFO, LDB, N, NRHS
142* ..
143* .. Array Arguments ..
144 COMPLEX AP( * ), B( LDB, * )
145* ..
146*
147* =====================================================================
148*
149* .. Parameters ..
150 COMPLEX ZERO
151 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
152* ..
153* .. Local Scalars ..
154 LOGICAL NOUNIT, UPPER
155 INTEGER J, JC
156* ..
157* .. External Functions ..
158 LOGICAL LSAME
159 EXTERNAL lsame
160* ..
161* .. External Subroutines ..
162 EXTERNAL ctpsv, xerbla
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC max
166* ..
167* .. Executable Statements ..
168*
169* Test the input parameters.
170*
171 info = 0
172 upper = lsame( uplo, 'U' )
173 nounit = lsame( diag, 'N' )
174 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
175 info = -1
176 ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.
177 $ lsame( trans, 'T' ) .AND.
178 $ .NOT.lsame( trans, 'C' ) ) THEN
179 info = -2
180 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
181 info = -3
182 ELSE IF( n.LT.0 ) THEN
183 info = -4
184 ELSE IF( nrhs.LT.0 ) THEN
185 info = -5
186 ELSE IF( ldb.LT.max( 1, n ) ) THEN
187 info = -8
188 END IF
189 IF( info.NE.0 ) THEN
190 CALL xerbla( 'CTPTRS', -info )
191 RETURN
192 END IF
193*
194* Quick return if possible
195*
196 IF( n.EQ.0 )
197 $ RETURN
198*
199* Check for singularity.
200*
201 IF( nounit ) THEN
202 IF( upper ) THEN
203 jc = 1
204 DO 10 info = 1, n
205 IF( ap( jc+info-1 ).EQ.zero )
206 $ RETURN
207 jc = jc + info
208 10 CONTINUE
209 ELSE
210 jc = 1
211 DO 20 info = 1, n
212 IF( ap( jc ).EQ.zero )
213 $ RETURN
214 jc = jc + n - info + 1
215 20 CONTINUE
216 END IF
217 END IF
218 info = 0
219*
220* Solve A * x = b, A**T * x = b, or A**H * x = b.
221*
222 DO 30 j = 1, nrhs
223 CALL ctpsv( uplo, trans, diag, n, ap, b( 1, j ), 1 )
224 30 CONTINUE
225*
226 RETURN
227*
228* End of CTPTRS
229*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctpsv(uplo, trans, diag, n, ap, x, incx)
CTPSV
Definition ctpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: