LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clarzt()

subroutine clarzt ( character  direct,
character  storev,
integer  n,
integer  k,
complex, dimension( ldv, * )  v,
integer  ldv,
complex, dimension( * )  tau,
complex, dimension( ldt, * )  t,
integer  ldt 
)

CLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Download CLARZT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLARZT forms the triangular factor T of a complex block reflector
 H of order > n, which is defined as a product of k elementary
 reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

 If STOREV = 'C', the vector which defines the elementary reflector
 H(i) is stored in the i-th column of the array V, and

    H  =  I - V * T * V**H

 If STOREV = 'R', the vector which defines the elementary reflector
 H(i) is stored in the i-th row of the array V, and

    H  =  I - V**H * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Parameters
[in]DIRECT
          DIRECT is CHARACTER*1
          Specifies the order in which the elementary reflectors are
          multiplied to form the block reflector:
          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
[in]STOREV
          STOREV is CHARACTER*1
          Specifies how the vectors which define the elementary
          reflectors are stored (see also Further Details):
          = 'C': columnwise                        (not supported yet)
          = 'R': rowwise
[in]N
          N is INTEGER
          The order of the block reflector H. N >= 0.
[in]K
          K is INTEGER
          The order of the triangular factor T (= the number of
          elementary reflectors). K >= 1.
[in,out]V
          V is COMPLEX array, dimension
                               (LDV,K) if STOREV = 'C'
                               (LDV,N) if STOREV = 'R'
          The matrix V. See further details.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
[in]TAU
          TAU is COMPLEX array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i).
[out]T
          T is COMPLEX array, dimension (LDT,K)
          The k by k triangular factor T of the block reflector.
          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
          lower triangular. The rest of the array is not used.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
  The shape of the matrix V and the storage of the vectors which define
  the H(i) is best illustrated by the following example with n = 5 and
  k = 3. The elements equal to 1 are not stored; the corresponding
  array elements are modified but restored on exit. The rest of the
  array is not used.

  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

                                              ______V_____
         ( v1 v2 v3 )                        /            \
         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
         ( v1 v2 v3 )
            .  .  .
            .  .  .
            1  .  .
               1  .
                  1

  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

                                                        ______V_____
            1                                          /            \
            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
            .  .  .
         ( v1 v2 v3 )
         ( v1 v2 v3 )
     V = ( v1 v2 v3 )
         ( v1 v2 v3 )
         ( v1 v2 v3 )

Definition at line 184 of file clarzt.f.

185*
186* -- LAPACK computational routine --
187* -- LAPACK is a software package provided by Univ. of Tennessee, --
188* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
189*
190* .. Scalar Arguments ..
191 CHARACTER DIRECT, STOREV
192 INTEGER K, LDT, LDV, N
193* ..
194* .. Array Arguments ..
195 COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
196* ..
197*
198* =====================================================================
199*
200* .. Parameters ..
201 COMPLEX ZERO
202 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
203* ..
204* .. Local Scalars ..
205 INTEGER I, INFO, J
206* ..
207* .. External Subroutines ..
208 EXTERNAL cgemv, clacgv, ctrmv, xerbla
209* ..
210* .. External Functions ..
211 LOGICAL LSAME
212 EXTERNAL lsame
213* ..
214* .. Executable Statements ..
215*
216* Check for currently supported options
217*
218 info = 0
219 IF( .NOT.lsame( direct, 'B' ) ) THEN
220 info = -1
221 ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
222 info = -2
223 END IF
224 IF( info.NE.0 ) THEN
225 CALL xerbla( 'CLARZT', -info )
226 RETURN
227 END IF
228*
229 DO 20 i = k, 1, -1
230 IF( tau( i ).EQ.zero ) THEN
231*
232* H(i) = I
233*
234 DO 10 j = i, k
235 t( j, i ) = zero
236 10 CONTINUE
237 ELSE
238*
239* general case
240*
241 IF( i.LT.k ) THEN
242*
243* T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**H
244*
245 CALL clacgv( n, v( i, 1 ), ldv )
246 CALL cgemv( 'No transpose', k-i, n, -tau( i ),
247 $ v( i+1, 1 ), ldv, v( i, 1 ), ldv, zero,
248 $ t( i+1, i ), 1 )
249 CALL clacgv( n, v( i, 1 ), ldv )
250*
251* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
252*
253 CALL ctrmv( 'Lower', 'No transpose', 'Non-unit', k-i,
254 $ t( i+1, i+1 ), ldt, t( i+1, i ), 1 )
255 END IF
256 t( i, i ) = tau( i )
257 END IF
258 20 CONTINUE
259 RETURN
260*
261* End of CLARZT
262*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
CGEMV
Definition cgemv.f:160
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:74
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctrmv(uplo, trans, diag, n, a, lda, x, incx)
CTRMV
Definition ctrmv.f:147
Here is the call graph for this function:
Here is the caller graph for this function: