LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgelq2()

subroutine cgelq2 ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( * ) tau,
complex, dimension( * ) work,
integer info )

CGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.

Download CGELQ2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGELQ2 computes an LQ factorization of a complex m-by-n matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a n-by-n orthogonal matrix;
!>    L is a lower-triangular m-by-m matrix;
!>    0 is a m-by-(n-m) zero matrix, if m < n.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the m by min(m,n) lower trapezoidal matrix L (L is
!>          lower triangular if m <= n); the elements above the diagonal,
!>          with the array TAU, represent the unitary matrix Q as a
!>          product of elementary reflectors (see Further Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
!>  A(i,i+1:n), and tau in TAU(i).
!> 

Definition at line 126 of file cgelq2.f.

127*
128* -- LAPACK computational routine --
129* -- LAPACK is a software package provided by Univ. of Tennessee, --
130* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131*
132* .. Scalar Arguments ..
133 INTEGER INFO, LDA, M, N
134* ..
135* .. Array Arguments ..
136 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
137* ..
138*
139* =====================================================================
140*
141* .. Local Scalars ..
142 INTEGER I, K
143* ..
144* .. External Subroutines ..
145 EXTERNAL clacgv, clarf1f, clarfg, xerbla
146* ..
147* .. Intrinsic Functions ..
148 INTRINSIC max, min
149* ..
150* .. Executable Statements ..
151*
152* Test the input arguments
153*
154 info = 0
155 IF( m.LT.0 ) THEN
156 info = -1
157 ELSE IF( n.LT.0 ) THEN
158 info = -2
159 ELSE IF( lda.LT.max( 1, m ) ) THEN
160 info = -4
161 END IF
162 IF( info.NE.0 ) THEN
163 CALL xerbla( 'CGELQ2', -info )
164 RETURN
165 END IF
166*
167 k = min( m, n )
168*
169 DO 10 i = 1, k
170*
171* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
172*
173 CALL clacgv( n-i+1, a( i, i ), lda )
174 CALL clarfg( n-i+1, a( i, i ), a( i, min( i+1, n ) ), lda,
175 $ tau( i ) )
176 IF( i.LT.m ) THEN
177*
178* Apply H(i) to A(i+1:m,i:n) from the right
179*
180 CALL clarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
181 $ tau( i ), a( i+1, i ), lda, work )
182 END IF
183 CALL clacgv( n-i+1, a( i, i ), lda )
184 10 CONTINUE
185 RETURN
186*
187* End of CGELQ2
188*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine clarfg(n, alpha, x, incx, tau)
CLARFG generates an elementary reflector (Householder matrix).
Definition clarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: