LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
|
subroutine dgelq2 | ( | integer | m, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( * ) | tau, | ||
double precision, dimension( * ) | work, | ||
integer | info | ||
) |
DGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Download DGELQ2 + dependencies [TGZ] [ZIP] [TXT]
DGELQ2 computes an LQ factorization of a real m-by-n matrix A: A = ( L 0 ) * Q where: Q is a n-by-n orthogonal matrix; L is a lower-triangular m-by-m matrix; 0 is a m-by-(n-m) zero matrix, if m < n.
[in] | M | M is INTEGER The number of rows of the matrix A. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix A. N >= 0. |
[in,out] | A | A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, the elements on and below the diagonal of the array contain the m by min(m,n) lower trapezoidal matrix L (L is lower triangular if m <= n); the elements above the diagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details). |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | TAU | TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (M) |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value |
The matrix Q is represented as a product of elementary reflectors Q = H(k) . . . H(2) H(1), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n), and tau in TAU(i).
Definition at line 128 of file dgelq2.f.