188 SUBROUTINE sgebd2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
195 INTEGER INFO, LDA, M, N
198 REAL A( LDA, * ), D( * ), E( * ), TAUP( * ),
199 $ TAUQ( * ), WORK( * )
206 parameter( zero = 0.0e+0, one = 1.0e+0 )
224 ELSE IF( n.LT.0 )
THEN
226 ELSE IF( lda.LT.max( 1, m ) )
THEN
230 CALL xerbla(
'SGEBD2', -info )
242 CALL slarfg( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
250 $
CALL slarf(
'Left', m-i+1, n-i, a( i, i ), 1, tauq( i ),
251 $ a( i, i+1 ), lda, work )
259 CALL slarfg( n-i, a( i, i+1 ), a( i, min( i+2, n ) ),
266 CALL slarf(
'Right', m-i, n-i, a( i, i+1 ), lda,
267 $ taup( i ), a( i+1, i+1 ), lda, work )
281 CALL slarfg( n-i+1, a( i, i ), a( i, min( i+1, n ) ), lda,
289 $
CALL slarf(
'Right', m-i, n-i+1, a( i, i ), lda,
290 $ taup( i ), a( i+1, i ), lda, work )
298 CALL slarfg( m-i, a( i+1, i ), a( min( i+2, m ), i ), 1,
305 CALL slarf(
'Left', m-i, n-i, a( i+1, i ), 1, tauq( i ),
306 $ a( i+1, i+1 ), lda, work )
subroutine xerbla(srname, info)
subroutine sgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
SGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
subroutine slarf(side, m, n, v, incv, tau, c, ldc, work)
SLARF applies an elementary reflector to a general rectangular matrix.
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).