LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zppt01()

subroutine zppt01 ( character uplo,
integer n,
complex*16, dimension( * ) a,
complex*16, dimension( * ) afac,
double precision, dimension( * ) rwork,
double precision resid )

ZPPT01

Purpose:
!>
!> ZPPT01 reconstructs a Hermitian positive definite packed matrix A
!> from its L*L' or U'*U factorization and computes the residual
!>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
!>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
!> where EPS is the machine epsilon, L' is the conjugate transpose of
!> L, and U' is the conjugate transpose of U.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows and columns of the matrix A.  N >= 0.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          The original Hermitian matrix A, stored as a packed
!>          triangular matrix.
!> 
[in,out]AFAC
!>          AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
!>          On entry, the factor L or U from the L*L' or U'*U
!>          factorization of A, stored as a packed triangular matrix.
!>          Overwritten with the reconstructed matrix, and then with the
!>          difference L*L' - A (or U'*U - A).
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (N)
!> 
[out]RESID
!>          RESID is DOUBLE PRECISION
!>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
!>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 94 of file zppt01.f.

95*
96* -- LAPACK test routine --
97* -- LAPACK is a software package provided by Univ. of Tennessee, --
98* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
99*
100* .. Scalar Arguments ..
101 CHARACTER UPLO
102 INTEGER N
103 DOUBLE PRECISION RESID
104* ..
105* .. Array Arguments ..
106 DOUBLE PRECISION RWORK( * )
107 COMPLEX*16 A( * ), AFAC( * )
108* ..
109*
110* =====================================================================
111*
112* .. Parameters ..
113 DOUBLE PRECISION ZERO, ONE
114 parameter( zero = 0.0d+0, one = 1.0d+0 )
115* ..
116* .. Local Scalars ..
117 INTEGER I, K, KC
118 DOUBLE PRECISION ANORM, EPS, TR
119 COMPLEX*16 TC
120* ..
121* .. External Functions ..
122 LOGICAL LSAME
123 DOUBLE PRECISION DLAMCH, ZLANHP
124 COMPLEX*16 ZDOTC
125 EXTERNAL lsame, dlamch, zlanhp, zdotc
126* ..
127* .. External Subroutines ..
128 EXTERNAL zhpr, zscal, ztpmv
129* ..
130* .. Intrinsic Functions ..
131 INTRINSIC dble, dimag
132* ..
133* .. Executable Statements ..
134*
135* Quick exit if N = 0
136*
137 IF( n.LE.0 ) THEN
138 resid = zero
139 RETURN
140 END IF
141*
142* Exit with RESID = 1/EPS if ANORM = 0.
143*
144 eps = dlamch( 'Epsilon' )
145 anorm = zlanhp( '1', uplo, n, a, rwork )
146 IF( anorm.LE.zero ) THEN
147 resid = one / eps
148 RETURN
149 END IF
150*
151* Check the imaginary parts of the diagonal elements and return with
152* an error code if any are nonzero.
153*
154 kc = 1
155 IF( lsame( uplo, 'U' ) ) THEN
156 DO 10 k = 1, n
157 IF( dimag( afac( kc ) ).NE.zero ) THEN
158 resid = one / eps
159 RETURN
160 END IF
161 kc = kc + k + 1
162 10 CONTINUE
163 ELSE
164 DO 20 k = 1, n
165 IF( dimag( afac( kc ) ).NE.zero ) THEN
166 resid = one / eps
167 RETURN
168 END IF
169 kc = kc + n - k + 1
170 20 CONTINUE
171 END IF
172*
173* Compute the product U'*U, overwriting U.
174*
175 IF( lsame( uplo, 'U' ) ) THEN
176 kc = ( n*( n-1 ) ) / 2 + 1
177 DO 30 k = n, 1, -1
178*
179* Compute the (K,K) element of the result.
180*
181 tr = dble( zdotc( k, afac( kc ), 1, afac( kc ), 1 ) )
182 afac( kc+k-1 ) = tr
183*
184* Compute the rest of column K.
185*
186 IF( k.GT.1 ) THEN
187 CALL ztpmv( 'Upper', 'Conjugate', 'Non-unit', k-1, afac,
188 $ afac( kc ), 1 )
189 kc = kc - ( k-1 )
190 END IF
191 30 CONTINUE
192*
193* Compute the difference L*L' - A
194*
195 kc = 1
196 DO 50 k = 1, n
197 DO 40 i = 1, k - 1
198 afac( kc+i-1 ) = afac( kc+i-1 ) - a( kc+i-1 )
199 40 CONTINUE
200 afac( kc+k-1 ) = afac( kc+k-1 ) - dble( a( kc+k-1 ) )
201 kc = kc + k
202 50 CONTINUE
203*
204* Compute the product L*L', overwriting L.
205*
206 ELSE
207 kc = ( n*( n+1 ) ) / 2
208 DO 60 k = n, 1, -1
209*
210* Add a multiple of column K of the factor L to each of
211* columns K+1 through N.
212*
213 IF( k.LT.n )
214 $ CALL zhpr( 'Lower', n-k, one, afac( kc+1 ), 1,
215 $ afac( kc+n-k+1 ) )
216*
217* Scale column K by the diagonal element.
218*
219 tc = afac( kc )
220 CALL zscal( n-k+1, tc, afac( kc ), 1 )
221*
222 kc = kc - ( n-k+2 )
223 60 CONTINUE
224*
225* Compute the difference U'*U - A
226*
227 kc = 1
228 DO 80 k = 1, n
229 afac( kc ) = afac( kc ) - dble( a( kc ) )
230 DO 70 i = k + 1, n
231 afac( kc+i-k ) = afac( kc+i-k ) - a( kc+i-k )
232 70 CONTINUE
233 kc = kc + n - k + 1
234 80 CONTINUE
235 END IF
236*
237* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
238*
239 resid = zlanhp( '1', uplo, n, afac, rwork )
240*
241 resid = ( ( resid / dble( n ) ) / anorm ) / eps
242*
243 RETURN
244*
245* End of ZPPT01
246*
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zhpr(uplo, n, alpha, x, incx, ap)
ZHPR
Definition zhpr.f:130
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlanhp(norm, uplo, n, ap, work)
ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition zlanhp.f:115
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
subroutine ztpmv(uplo, trans, diag, n, ap, x, incx)
ZTPMV
Definition ztpmv.f:142
Here is the call graph for this function:
Here is the caller graph for this function: