LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine zppt01 | ( | character | uplo, |
integer | n, | ||
complex*16, dimension( * ) | a, | ||
complex*16, dimension( * ) | afac, | ||
double precision, dimension( * ) | rwork, | ||
double precision | resid ) |
ZPPT01
!> !> ZPPT01 reconstructs a Hermitian positive definite packed matrix A !> from its L*L' or U'*U factorization and computes the residual !> norm( L*L' - A ) / ( N * norm(A) * EPS ) or !> norm( U'*U - A ) / ( N * norm(A) * EPS ), !> where EPS is the machine epsilon, L' is the conjugate transpose of !> L, and U' is the conjugate transpose of U. !>
[in] | UPLO | !> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> Hermitian matrix A is stored: !> = 'U': Upper triangular !> = 'L': Lower triangular !> |
[in] | N | !> N is INTEGER !> The number of rows and columns of the matrix A. N >= 0. !> |
[in] | A | !> A is COMPLEX*16 array, dimension (N*(N+1)/2) !> The original Hermitian matrix A, stored as a packed !> triangular matrix. !> |
[in,out] | AFAC | !> AFAC is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the factor L or U from the L*L' or U'*U !> factorization of A, stored as a packed triangular matrix. !> Overwritten with the reconstructed matrix, and then with the !> difference L*L' - A (or U'*U - A). !> |
[out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (N) !> |
[out] | RESID | !> RESID is DOUBLE PRECISION !> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) !> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS ) !> |
Definition at line 94 of file zppt01.f.