LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zlaqsp()

subroutine zlaqsp ( character uplo,
integer n,
complex*16, dimension( * ) ap,
double precision, dimension( * ) s,
double precision scond,
double precision amax,
character equed )

ZLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppequ.

Download ZLAQSP + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZLAQSP equilibrates a symmetric matrix A using the scaling factors !> in the vector S. !>
Parameters
[in]UPLO
!> UPLO is CHARACTER*1 !> Specifies whether the upper or lower triangular part of the !> symmetric matrix A is stored. !> = 'U': Upper triangular !> = 'L': Lower triangular !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in,out]AP
!> AP is COMPLEX*16 array, dimension (N*(N+1)/2) !> On entry, the upper or lower triangle of the symmetric matrix !> A, packed columnwise in a linear array. The j-th column of A !> is stored in the array AP as follows: !> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; !> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. !> !> On exit, the equilibrated matrix: diag(S) * A * diag(S), in !> the same storage format as A. !>
[in]S
!> S is DOUBLE PRECISION array, dimension (N) !> The scale factors for A. !>
[in]SCOND
!> SCOND is DOUBLE PRECISION !> Ratio of the smallest S(i) to the largest S(i). !>
[in]AMAX
!> AMAX is DOUBLE PRECISION !> Absolute value of largest matrix entry. !>
[out]EQUED
!> EQUED is CHARACTER*1 !> Specifies whether or not equilibration was done. !> = 'N': No equilibration. !> = 'Y': Equilibration was done, i.e., A has been replaced by !> diag(S) * A * diag(S). !>
Internal Parameters:
!> THRESH is a threshold value used to decide if scaling should be done !> based on the ratio of the scaling factors. If SCOND < THRESH, !> scaling is done. !> !> LARGE and SMALL are threshold values used to decide if scaling should !> be done based on the absolute size of the largest matrix element. !> If AMAX > LARGE or AMAX < SMALL, scaling is done. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 123 of file zlaqsp.f.

124*
125* -- LAPACK auxiliary routine --
126* -- LAPACK is a software package provided by Univ. of Tennessee, --
127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129* .. Scalar Arguments ..
130 CHARACTER EQUED, UPLO
131 INTEGER N
132 DOUBLE PRECISION AMAX, SCOND
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION S( * )
136 COMPLEX*16 AP( * )
137* ..
138*
139* =====================================================================
140*
141* .. Parameters ..
142 DOUBLE PRECISION ONE, THRESH
143 parameter( one = 1.0d+0, thresh = 0.1d+0 )
144* ..
145* .. Local Scalars ..
146 INTEGER I, J, JC
147 DOUBLE PRECISION CJ, LARGE, SMALL
148* ..
149* .. External Functions ..
150 LOGICAL LSAME
151 DOUBLE PRECISION DLAMCH
152 EXTERNAL lsame, dlamch
153* ..
154* .. Executable Statements ..
155*
156* Quick return if possible
157*
158 IF( n.LE.0 ) THEN
159 equed = 'N'
160 RETURN
161 END IF
162*
163* Initialize LARGE and SMALL.
164*
165 small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
166 large = one / small
167*
168 IF( scond.GE.thresh .AND. amax.GE.small .AND. amax.LE.large ) THEN
169*
170* No equilibration
171*
172 equed = 'N'
173 ELSE
174*
175* Replace A by diag(S) * A * diag(S).
176*
177 IF( lsame( uplo, 'U' ) ) THEN
178*
179* Upper triangle of A is stored.
180*
181 jc = 1
182 DO 20 j = 1, n
183 cj = s( j )
184 DO 10 i = 1, j
185 ap( jc+i-1 ) = cj*s( i )*ap( jc+i-1 )
186 10 CONTINUE
187 jc = jc + j
188 20 CONTINUE
189 ELSE
190*
191* Lower triangle of A is stored.
192*
193 jc = 1
194 DO 40 j = 1, n
195 cj = s( j )
196 DO 30 i = j, n
197 ap( jc+i-j ) = cj*s( i )*ap( jc+i-j )
198 30 CONTINUE
199 jc = jc + n - j + 1
200 40 CONTINUE
201 END IF
202 equed = 'Y'
203 END IF
204*
205 RETURN
206*
207* End of ZLAQSP
208*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48