LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlanv2 | ( | double precision | a, |
double precision | b, | ||
double precision | c, | ||
double precision | d, | ||
double precision | rt1r, | ||
double precision | rt1i, | ||
double precision | rt2r, | ||
double precision | rt2i, | ||
double precision | cs, | ||
double precision | sn ) |
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
Download DLANV2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric !> matrix in standard form: !> !> [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] !> [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] !> !> where either !> 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or !> 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex !> conjugate eigenvalues. !>
[in,out] | A | !> A is DOUBLE PRECISION !> |
[in,out] | B | !> B is DOUBLE PRECISION !> |
[in,out] | C | !> C is DOUBLE PRECISION !> |
[in,out] | D | !> D is DOUBLE PRECISION !> On entry, the elements of the input matrix. !> On exit, they are overwritten by the elements of the !> standardised Schur form. !> |
[out] | RT1R | !> RT1R is DOUBLE PRECISION !> |
[out] | RT1I | !> RT1I is DOUBLE PRECISION !> |
[out] | RT2R | !> RT2R is DOUBLE PRECISION !> |
[out] | RT2I | !> RT2I is DOUBLE PRECISION !> The real and imaginary parts of the eigenvalues. If the !> eigenvalues are a complex conjugate pair, RT1I > 0. !> |
[out] | CS | !> CS is DOUBLE PRECISION !> |
[out] | SN | !> SN is DOUBLE PRECISION !> Parameters of the rotation matrix. !> |
!> !> Modified by V. Sima, Research Institute for Informatics, Bucharest, !> Romania, to reduce the risk of cancellation errors, !> when computing real eigenvalues, and to ensure, if possible, that !> abs(RT1R) >= abs(RT2R). !>
Definition at line 124 of file dlanv2.f.