LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlasr()

subroutine dlasr ( character  side,
character  pivot,
character  direct,
integer  m,
integer  n,
double precision, dimension( * )  c,
double precision, dimension( * )  s,
double precision, dimension( lda, * )  a,
integer  lda 
)

DLASR applies a sequence of plane rotations to a general rectangular matrix.

Download DLASR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLASR applies a sequence of plane rotations to a real matrix A,
 from either the left or the right.

 When SIDE = 'L', the transformation takes the form

    A := P*A

 and when SIDE = 'R', the transformation takes the form

    A := A*P**T

 where P is an orthogonal matrix consisting of a sequence of z plane
 rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
 and P**T is the transpose of P.

 When DIRECT = 'F' (Forward sequence), then

    P = P(z-1) * ... * P(2) * P(1)

 and when DIRECT = 'B' (Backward sequence), then

    P = P(1) * P(2) * ... * P(z-1)

 where P(k) is a plane rotation matrix defined by the 2-by-2 rotation

    R(k) = (  c(k)  s(k) )
         = ( -s(k)  c(k) ).

 When PIVOT = 'V' (Variable pivot), the rotation is performed
 for the plane (k,k+1), i.e., P(k) has the form

    P(k) = (  1                                            )
           (       ...                                     )
           (              1                                )
           (                   c(k)  s(k)                  )
           (                  -s(k)  c(k)                  )
           (                                1              )
           (                                     ...       )
           (                                            1  )

 where R(k) appears as a rank-2 modification to the identity matrix in
 rows and columns k and k+1.

 When PIVOT = 'T' (Top pivot), the rotation is performed for the
 plane (1,k+1), so P(k) has the form

    P(k) = (  c(k)                    s(k)                 )
           (         1                                     )
           (              ...                              )
           (                     1                         )
           ( -s(k)                    c(k)                 )
           (                                 1             )
           (                                      ...      )
           (                                             1 )

 where R(k) appears in rows and columns 1 and k+1.

 Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
 performed for the plane (k,z), giving P(k) the form

    P(k) = ( 1                                             )
           (      ...                                      )
           (             1                                 )
           (                  c(k)                    s(k) )
           (                         1                     )
           (                              ...              )
           (                                     1         )
           (                 -s(k)                    c(k) )

 where R(k) appears in rows and columns k and z.  The rotations are
 performed without ever forming P(k) explicitly.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          Specifies whether the plane rotation matrix P is applied to
          A on the left or the right.
          = 'L':  Left, compute A := P*A
          = 'R':  Right, compute A:= A*P**T
[in]PIVOT
          PIVOT is CHARACTER*1
          Specifies the plane for which P(k) is a plane rotation
          matrix.
          = 'V':  Variable pivot, the plane (k,k+1)
          = 'T':  Top pivot, the plane (1,k+1)
          = 'B':  Bottom pivot, the plane (k,z)
[in]DIRECT
          DIRECT is CHARACTER*1
          Specifies whether P is a forward or backward sequence of
          plane rotations.
          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
[in]M
          M is INTEGER
          The number of rows of the matrix A.  If m <= 1, an immediate
          return is effected.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  If n <= 1, an
          immediate return is effected.
[in]C
          C is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The cosines c(k) of the plane rotations.
[in]S
          S is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The sines s(k) of the plane rotations.  The 2-by-2 plane
          rotation part of the matrix P(k), R(k), has the form
          R(k) = (  c(k)  s(k) )
                 ( -s(k)  c(k) ).
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          The M-by-N matrix A.  On exit, A is overwritten by P*A if
          SIDE = 'L' or by A*P**T if SIDE = 'R'.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 198 of file dlasr.f.

199*
200* -- LAPACK auxiliary routine --
201* -- LAPACK is a software package provided by Univ. of Tennessee, --
202* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
203*
204* .. Scalar Arguments ..
205 CHARACTER DIRECT, PIVOT, SIDE
206 INTEGER LDA, M, N
207* ..
208* .. Array Arguments ..
209 DOUBLE PRECISION A( LDA, * ), C( * ), S( * )
210* ..
211*
212* =====================================================================
213*
214* .. Parameters ..
215 DOUBLE PRECISION ONE, ZERO
216 parameter( one = 1.0d+0, zero = 0.0d+0 )
217* ..
218* .. Local Scalars ..
219 INTEGER I, INFO, J
220 DOUBLE PRECISION CTEMP, STEMP, TEMP
221* ..
222* .. External Functions ..
223 LOGICAL LSAME
224 EXTERNAL lsame
225* ..
226* .. External Subroutines ..
227 EXTERNAL xerbla
228* ..
229* .. Intrinsic Functions ..
230 INTRINSIC max
231* ..
232* .. Executable Statements ..
233*
234* Test the input parameters
235*
236 info = 0
237 IF( .NOT.( lsame( side, 'L' ) .OR. lsame( side, 'R' ) ) ) THEN
238 info = 1
239 ELSE IF( .NOT.( lsame( pivot, 'V' ) .OR. lsame( pivot,
240 $ 'T' ) .OR. lsame( pivot, 'B' ) ) ) THEN
241 info = 2
242 ELSE IF( .NOT.( lsame( direct, 'F' ) .OR. lsame( direct, 'B' ) ) )
243 $ THEN
244 info = 3
245 ELSE IF( m.LT.0 ) THEN
246 info = 4
247 ELSE IF( n.LT.0 ) THEN
248 info = 5
249 ELSE IF( lda.LT.max( 1, m ) ) THEN
250 info = 9
251 END IF
252 IF( info.NE.0 ) THEN
253 CALL xerbla( 'DLASR ', info )
254 RETURN
255 END IF
256*
257* Quick return if possible
258*
259 IF( ( m.EQ.0 ) .OR. ( n.EQ.0 ) )
260 $ RETURN
261 IF( lsame( side, 'L' ) ) THEN
262*
263* Form P * A
264*
265 IF( lsame( pivot, 'V' ) ) THEN
266 IF( lsame( direct, 'F' ) ) THEN
267 DO 20 j = 1, m - 1
268 ctemp = c( j )
269 stemp = s( j )
270 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
271 DO 10 i = 1, n
272 temp = a( j+1, i )
273 a( j+1, i ) = ctemp*temp - stemp*a( j, i )
274 a( j, i ) = stemp*temp + ctemp*a( j, i )
275 10 CONTINUE
276 END IF
277 20 CONTINUE
278 ELSE IF( lsame( direct, 'B' ) ) THEN
279 DO 40 j = m - 1, 1, -1
280 ctemp = c( j )
281 stemp = s( j )
282 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
283 DO 30 i = 1, n
284 temp = a( j+1, i )
285 a( j+1, i ) = ctemp*temp - stemp*a( j, i )
286 a( j, i ) = stemp*temp + ctemp*a( j, i )
287 30 CONTINUE
288 END IF
289 40 CONTINUE
290 END IF
291 ELSE IF( lsame( pivot, 'T' ) ) THEN
292 IF( lsame( direct, 'F' ) ) THEN
293 DO 60 j = 2, m
294 ctemp = c( j-1 )
295 stemp = s( j-1 )
296 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
297 DO 50 i = 1, n
298 temp = a( j, i )
299 a( j, i ) = ctemp*temp - stemp*a( 1, i )
300 a( 1, i ) = stemp*temp + ctemp*a( 1, i )
301 50 CONTINUE
302 END IF
303 60 CONTINUE
304 ELSE IF( lsame( direct, 'B' ) ) THEN
305 DO 80 j = m, 2, -1
306 ctemp = c( j-1 )
307 stemp = s( j-1 )
308 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
309 DO 70 i = 1, n
310 temp = a( j, i )
311 a( j, i ) = ctemp*temp - stemp*a( 1, i )
312 a( 1, i ) = stemp*temp + ctemp*a( 1, i )
313 70 CONTINUE
314 END IF
315 80 CONTINUE
316 END IF
317 ELSE IF( lsame( pivot, 'B' ) ) THEN
318 IF( lsame( direct, 'F' ) ) THEN
319 DO 100 j = 1, m - 1
320 ctemp = c( j )
321 stemp = s( j )
322 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
323 DO 90 i = 1, n
324 temp = a( j, i )
325 a( j, i ) = stemp*a( m, i ) + ctemp*temp
326 a( m, i ) = ctemp*a( m, i ) - stemp*temp
327 90 CONTINUE
328 END IF
329 100 CONTINUE
330 ELSE IF( lsame( direct, 'B' ) ) THEN
331 DO 120 j = m - 1, 1, -1
332 ctemp = c( j )
333 stemp = s( j )
334 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
335 DO 110 i = 1, n
336 temp = a( j, i )
337 a( j, i ) = stemp*a( m, i ) + ctemp*temp
338 a( m, i ) = ctemp*a( m, i ) - stemp*temp
339 110 CONTINUE
340 END IF
341 120 CONTINUE
342 END IF
343 END IF
344 ELSE IF( lsame( side, 'R' ) ) THEN
345*
346* Form A * P**T
347*
348 IF( lsame( pivot, 'V' ) ) THEN
349 IF( lsame( direct, 'F' ) ) THEN
350 DO 140 j = 1, n - 1
351 ctemp = c( j )
352 stemp = s( j )
353 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
354 DO 130 i = 1, m
355 temp = a( i, j+1 )
356 a( i, j+1 ) = ctemp*temp - stemp*a( i, j )
357 a( i, j ) = stemp*temp + ctemp*a( i, j )
358 130 CONTINUE
359 END IF
360 140 CONTINUE
361 ELSE IF( lsame( direct, 'B' ) ) THEN
362 DO 160 j = n - 1, 1, -1
363 ctemp = c( j )
364 stemp = s( j )
365 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
366 DO 150 i = 1, m
367 temp = a( i, j+1 )
368 a( i, j+1 ) = ctemp*temp - stemp*a( i, j )
369 a( i, j ) = stemp*temp + ctemp*a( i, j )
370 150 CONTINUE
371 END IF
372 160 CONTINUE
373 END IF
374 ELSE IF( lsame( pivot, 'T' ) ) THEN
375 IF( lsame( direct, 'F' ) ) THEN
376 DO 180 j = 2, n
377 ctemp = c( j-1 )
378 stemp = s( j-1 )
379 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
380 DO 170 i = 1, m
381 temp = a( i, j )
382 a( i, j ) = ctemp*temp - stemp*a( i, 1 )
383 a( i, 1 ) = stemp*temp + ctemp*a( i, 1 )
384 170 CONTINUE
385 END IF
386 180 CONTINUE
387 ELSE IF( lsame( direct, 'B' ) ) THEN
388 DO 200 j = n, 2, -1
389 ctemp = c( j-1 )
390 stemp = s( j-1 )
391 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
392 DO 190 i = 1, m
393 temp = a( i, j )
394 a( i, j ) = ctemp*temp - stemp*a( i, 1 )
395 a( i, 1 ) = stemp*temp + ctemp*a( i, 1 )
396 190 CONTINUE
397 END IF
398 200 CONTINUE
399 END IF
400 ELSE IF( lsame( pivot, 'B' ) ) THEN
401 IF( lsame( direct, 'F' ) ) THEN
402 DO 220 j = 1, n - 1
403 ctemp = c( j )
404 stemp = s( j )
405 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
406 DO 210 i = 1, m
407 temp = a( i, j )
408 a( i, j ) = stemp*a( i, n ) + ctemp*temp
409 a( i, n ) = ctemp*a( i, n ) - stemp*temp
410 210 CONTINUE
411 END IF
412 220 CONTINUE
413 ELSE IF( lsame( direct, 'B' ) ) THEN
414 DO 240 j = n - 1, 1, -1
415 ctemp = c( j )
416 stemp = s( j )
417 IF( ( ctemp.NE.one ) .OR. ( stemp.NE.zero ) ) THEN
418 DO 230 i = 1, m
419 temp = a( i, j )
420 a( i, j ) = stemp*a( i, n ) + ctemp*temp
421 a( i, n ) = ctemp*a( i, n ) - stemp*temp
422 230 CONTINUE
423 END IF
424 240 CONTINUE
425 END IF
426 END IF
427 END IF
428*
429 RETURN
430*
431* End of DLASR
432*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: