LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine clasr | ( | character | side, |
character | pivot, | ||
character | direct, | ||
integer | m, | ||
integer | n, | ||
real, dimension( * ) | c, | ||
real, dimension( * ) | s, | ||
complex, dimension( lda, * ) | a, | ||
integer | lda ) |
CLASR applies a sequence of plane rotations to a general rectangular matrix.
Download CLASR + dependencies [TGZ] [ZIP] [TXT]
!> !> CLASR applies a sequence of real plane rotations to a complex matrix !> A, from either the left or the right. !> !> When SIDE = 'L', the transformation takes the form !> !> A := P*A !> !> and when SIDE = 'R', the transformation takes the form !> !> A := A*P**T !> !> where P is an orthogonal matrix consisting of a sequence of z plane !> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R', !> and P**T is the transpose of P. !> !> When DIRECT = 'F' (Forward sequence), then !> !> P = P(z-1) * ... * P(2) * P(1) !> !> and when DIRECT = 'B' (Backward sequence), then !> !> P = P(1) * P(2) * ... * P(z-1) !> !> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation !> !> R(k) = ( c(k) s(k) ) !> = ( -s(k) c(k) ). !> !> When PIVOT = 'V' (Variable pivot), the rotation is performed !> for the plane (k,k+1), i.e., P(k) has the form !> !> P(k) = ( 1 ) !> ( ... ) !> ( 1 ) !> ( c(k) s(k) ) !> ( -s(k) c(k) ) !> ( 1 ) !> ( ... ) !> ( 1 ) !> !> where R(k) appears as a rank-2 modification to the identity matrix in !> rows and columns k and k+1. !> !> When PIVOT = 'T' (Top pivot), the rotation is performed for the !> plane (1,k+1), so P(k) has the form !> !> P(k) = ( c(k) s(k) ) !> ( 1 ) !> ( ... ) !> ( 1 ) !> ( -s(k) c(k) ) !> ( 1 ) !> ( ... ) !> ( 1 ) !> !> where R(k) appears in rows and columns 1 and k+1. !> !> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is !> performed for the plane (k,z), giving P(k) the form !> !> P(k) = ( 1 ) !> ( ... ) !> ( 1 ) !> ( c(k) s(k) ) !> ( 1 ) !> ( ... ) !> ( 1 ) !> ( -s(k) c(k) ) !> !> where R(k) appears in rows and columns k and z. The rotations are !> performed without ever forming P(k) explicitly. !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> Specifies whether the plane rotation matrix P is applied to !> A on the left or the right. !> = 'L': Left, compute A := P*A !> = 'R': Right, compute A:= A*P**T !> |
[in] | PIVOT | !> PIVOT is CHARACTER*1 !> Specifies the plane for which P(k) is a plane rotation !> matrix. !> = 'V': Variable pivot, the plane (k,k+1) !> = 'T': Top pivot, the plane (1,k+1) !> = 'B': Bottom pivot, the plane (k,z) !> |
[in] | DIRECT | !> DIRECT is CHARACTER*1 !> Specifies whether P is a forward or backward sequence of !> plane rotations. !> = 'F': Forward, P = P(z-1)*...*P(2)*P(1) !> = 'B': Backward, P = P(1)*P(2)*...*P(z-1) !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. If m <= 1, an immediate !> return is effected. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. If n <= 1, an !> immediate return is effected. !> |
[in] | C | !> C is REAL array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> The cosines c(k) of the plane rotations. !> |
[in] | S | !> S is REAL array, dimension !> (M-1) if SIDE = 'L' !> (N-1) if SIDE = 'R' !> The sines s(k) of the plane rotations. The 2-by-2 plane !> rotation part of the matrix P(k), R(k), has the form !> R(k) = ( c(k) s(k) ) !> ( -s(k) c(k) ). !> |
[in,out] | A | !> A is COMPLEX array, dimension (LDA,N) !> The M-by-N matrix A. On exit, A is overwritten by P*A if !> SIDE = 'R' or by A*P**T if SIDE = 'L'. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
Definition at line 197 of file clasr.f.