LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zlatrd()

subroutine zlatrd ( character uplo,
integer n,
integer nb,
complex*16, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) e,
complex*16, dimension( * ) tau,
complex*16, dimension( ldw, * ) w,
integer ldw )

ZLATRD reduces the first nb rows and columns of a symmetric/Hermitian matrix A to real tridiagonal form by an unitary similarity transformation.

Download ZLATRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZLATRD reduces NB rows and columns of a complex Hermitian matrix A to
!> Hermitian tridiagonal form by a unitary similarity
!> transformation Q**H * A * Q, and returns the matrices V and W which are
!> needed to apply the transformation to the unreduced part of A.
!>
!> If UPLO = 'U', ZLATRD reduces the last NB rows and columns of a
!> matrix, of which the upper triangle is supplied;
!> if UPLO = 'L', ZLATRD reduces the first NB rows and columns of a
!> matrix, of which the lower triangle is supplied.
!>
!> This is an auxiliary routine called by ZHETRD.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the upper or lower triangular part of the
!>          Hermitian matrix A is stored:
!>          = 'U': Upper triangular
!>          = 'L': Lower triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.
!> 
[in]NB
!>          NB is INTEGER
!>          The number of rows and columns to be reduced.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
!>          n-by-n upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading n-by-n lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>          On exit:
!>          if UPLO = 'U', the last NB columns have been reduced to
!>            tridiagonal form, with the diagonal elements overwriting
!>            the diagonal elements of A; the elements above the diagonal
!>            with the array TAU, represent the unitary matrix Q as a
!>            product of elementary reflectors;
!>          if UPLO = 'L', the first NB columns have been reduced to
!>            tridiagonal form, with the diagonal elements overwriting
!>            the diagonal elements of A; the elements below the diagonal
!>            with the array TAU, represent the  unitary matrix Q as a
!>            product of elementary reflectors.
!>          See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]E
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
!>          elements of the last NB columns of the reduced matrix;
!>          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
!>          the first NB columns of the reduced matrix.
!> 
[out]TAU
!>          TAU is COMPLEX*16 array, dimension (N-1)
!>          The scalar factors of the elementary reflectors, stored in
!>          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
!>          See Further Details.
!> 
[out]W
!>          W is COMPLEX*16 array, dimension (LDW,NB)
!>          The n-by-nb matrix W required to update the unreduced part
!>          of A.
!> 
[in]LDW
!>          LDW is INTEGER
!>          The leading dimension of the array W. LDW >= max(1,N).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  If UPLO = 'U', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(n) H(n-1) . . . H(n-nb+1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
!>  and tau in TAU(i-1).
!>
!>  If UPLO = 'L', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(1) H(2) . . . H(nb).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
!>  and tau in TAU(i).
!>
!>  The elements of the vectors v together form the n-by-nb matrix V
!>  which is needed, with W, to apply the transformation to the unreduced
!>  part of the matrix, using a Hermitian rank-2k update of the form:
!>  A := A - V*W**H - W*V**H.
!>
!>  The contents of A on exit are illustrated by the following examples
!>  with n = 5 and nb = 2:
!>
!>  if UPLO = 'U':                       if UPLO = 'L':
!>
!>    (  a   a   a   v4  v5 )              (  d                  )
!>    (      a   a   v4  v5 )              (  1   d              )
!>    (          a   1   v5 )              (  v1  1   a          )
!>    (              d   1  )              (  v1  v2  a   a      )
!>    (                  d  )              (  v1  v2  a   a   a  )
!>
!>  where d denotes a diagonal element of the reduced matrix, a denotes
!>  an element of the original matrix that is unchanged, and vi denotes
!>  an element of the vector defining H(i).
!> 

Definition at line 196 of file zlatrd.f.

197*
198* -- LAPACK auxiliary routine --
199* -- LAPACK is a software package provided by Univ. of Tennessee, --
200* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201*
202* .. Scalar Arguments ..
203 CHARACTER UPLO
204 INTEGER LDA, LDW, N, NB
205* ..
206* .. Array Arguments ..
207 DOUBLE PRECISION E( * )
208 COMPLEX*16 A( LDA, * ), TAU( * ), W( LDW, * )
209* ..
210*
211* =====================================================================
212*
213* .. Parameters ..
214 COMPLEX*16 ZERO, ONE, HALF
215 parameter( zero = ( 0.0d+0, 0.0d+0 ),
216 $ one = ( 1.0d+0, 0.0d+0 ),
217 $ half = ( 0.5d+0, 0.0d+0 ) )
218* ..
219* .. Local Scalars ..
220 INTEGER I, IW
221 COMPLEX*16 ALPHA
222* ..
223* .. External Subroutines ..
224 EXTERNAL zaxpy, zgemv, zhemv, zlacgv, zlarfg,
225 $ zscal
226* ..
227* .. External Functions ..
228 LOGICAL LSAME
229 COMPLEX*16 ZDOTC
230 EXTERNAL lsame, zdotc
231* ..
232* .. Intrinsic Functions ..
233 INTRINSIC dble, min
234* ..
235* .. Executable Statements ..
236*
237* Quick return if possible
238*
239 IF( n.LE.0 )
240 $ RETURN
241*
242 IF( lsame( uplo, 'U' ) ) THEN
243*
244* Reduce last NB columns of upper triangle
245*
246 DO 10 i = n, n - nb + 1, -1
247 iw = i - n + nb
248 IF( i.LT.n ) THEN
249*
250* Update A(1:i,i)
251*
252 a( i, i ) = dble( a( i, i ) )
253 CALL zlacgv( n-i, w( i, iw+1 ), ldw )
254 CALL zgemv( 'No transpose', i, n-i, -one, a( 1, i+1 ),
255 $ lda, w( i, iw+1 ), ldw, one, a( 1, i ), 1 )
256 CALL zlacgv( n-i, w( i, iw+1 ), ldw )
257 CALL zlacgv( n-i, a( i, i+1 ), lda )
258 CALL zgemv( 'No transpose', i, n-i, -one, w( 1,
259 $ iw+1 ),
260 $ ldw, a( i, i+1 ), lda, one, a( 1, i ), 1 )
261 CALL zlacgv( n-i, a( i, i+1 ), lda )
262 a( i, i ) = dble( a( i, i ) )
263 END IF
264 IF( i.GT.1 ) THEN
265*
266* Generate elementary reflector H(i) to annihilate
267* A(1:i-2,i)
268*
269 alpha = a( i-1, i )
270 CALL zlarfg( i-1, alpha, a( 1, i ), 1, tau( i-1 ) )
271 e( i-1 ) = dble( alpha )
272 a( i-1, i ) = one
273*
274* Compute W(1:i-1,i)
275*
276 CALL zhemv( 'Upper', i-1, one, a, lda, a( 1, i ), 1,
277 $ zero, w( 1, iw ), 1 )
278 IF( i.LT.n ) THEN
279 CALL zgemv( 'Conjugate transpose', i-1, n-i, one,
280 $ w( 1, iw+1 ), ldw, a( 1, i ), 1, zero,
281 $ w( i+1, iw ), 1 )
282 CALL zgemv( 'No transpose', i-1, n-i, -one,
283 $ a( 1, i+1 ), lda, w( i+1, iw ), 1, one,
284 $ w( 1, iw ), 1 )
285 CALL zgemv( 'Conjugate transpose', i-1, n-i, one,
286 $ a( 1, i+1 ), lda, a( 1, i ), 1, zero,
287 $ w( i+1, iw ), 1 )
288 CALL zgemv( 'No transpose', i-1, n-i, -one,
289 $ w( 1, iw+1 ), ldw, w( i+1, iw ), 1, one,
290 $ w( 1, iw ), 1 )
291 END IF
292 CALL zscal( i-1, tau( i-1 ), w( 1, iw ), 1 )
293 alpha = -half*tau( i-1 )*zdotc( i-1, w( 1, iw ), 1,
294 $ a( 1, i ), 1 )
295 CALL zaxpy( i-1, alpha, a( 1, i ), 1, w( 1, iw ), 1 )
296 END IF
297*
298 10 CONTINUE
299 ELSE
300*
301* Reduce first NB columns of lower triangle
302*
303 DO 20 i = 1, nb
304*
305* Update A(i:n,i)
306*
307 a( i, i ) = dble( a( i, i ) )
308 CALL zlacgv( i-1, w( i, 1 ), ldw )
309 CALL zgemv( 'No transpose', n-i+1, i-1, -one, a( i, 1 ),
310 $ lda, w( i, 1 ), ldw, one, a( i, i ), 1 )
311 CALL zlacgv( i-1, w( i, 1 ), ldw )
312 CALL zlacgv( i-1, a( i, 1 ), lda )
313 CALL zgemv( 'No transpose', n-i+1, i-1, -one, w( i, 1 ),
314 $ ldw, a( i, 1 ), lda, one, a( i, i ), 1 )
315 CALL zlacgv( i-1, a( i, 1 ), lda )
316 a( i, i ) = dble( a( i, i ) )
317 IF( i.LT.n ) THEN
318*
319* Generate elementary reflector H(i) to annihilate
320* A(i+2:n,i)
321*
322 alpha = a( i+1, i )
323 CALL zlarfg( n-i, alpha, a( min( i+2, n ), i ), 1,
324 $ tau( i ) )
325 e( i ) = dble( alpha )
326 a( i+1, i ) = one
327*
328* Compute W(i+1:n,i)
329*
330 CALL zhemv( 'Lower', n-i, one, a( i+1, i+1 ), lda,
331 $ a( i+1, i ), 1, zero, w( i+1, i ), 1 )
332 CALL zgemv( 'Conjugate transpose', n-i, i-1, one,
333 $ w( i+1, 1 ), ldw, a( i+1, i ), 1, zero,
334 $ w( 1, i ), 1 )
335 CALL zgemv( 'No transpose', n-i, i-1, -one, a( i+1,
336 $ 1 ),
337 $ lda, w( 1, i ), 1, one, w( i+1, i ), 1 )
338 CALL zgemv( 'Conjugate transpose', n-i, i-1, one,
339 $ a( i+1, 1 ), lda, a( i+1, i ), 1, zero,
340 $ w( 1, i ), 1 )
341 CALL zgemv( 'No transpose', n-i, i-1, -one, w( i+1,
342 $ 1 ),
343 $ ldw, w( 1, i ), 1, one, w( i+1, i ), 1 )
344 CALL zscal( n-i, tau( i ), w( i+1, i ), 1 )
345 alpha = -half*tau( i )*zdotc( n-i, w( i+1, i ), 1,
346 $ a( i+1, i ), 1 )
347 CALL zaxpy( n-i, alpha, a( i+1, i ), 1, w( i+1, i ),
348 $ 1 )
349 END IF
350*
351 20 CONTINUE
352 END IF
353*
354 RETURN
355*
356* End of ZLATRD
357*
subroutine zaxpy(n, za, zx, incx, zy, incy)
ZAXPY
Definition zaxpy.f:88
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
subroutine zhemv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZHEMV
Definition zhemv.f:154
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine zscal(n, za, zx, incx)
ZSCAL
Definition zscal.f:78
Here is the call graph for this function:
Here is the caller graph for this function: