138 $ LDAF, IPIV, C, CAPPLY,
139 $ INFO, WORK, RWORK )
148 INTEGER n, lda, ldaf, info
152 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * )
153 DOUBLE PRECISION c ( * ), rwork( * )
160 DOUBLE PRECISION ainvnm, anorm, tmp
178 DOUBLE PRECISION cabs1
181 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
188 upper =
lsame( uplo,
'U' )
189 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
191 ELSE IF( n.LT.0 )
THEN
193 ELSE IF( lda.LT.max( 1, n ) )
THEN
195 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
199 CALL xerbla(
'ZLA_HERCOND_C', -info )
203 IF (
lsame( uplo,
'U' ) ) up = .true.
213 tmp = tmp + cabs1( a( j, i ) ) / c( j )
216 tmp = tmp + cabs1( a( i, j ) ) / c( j )
220 tmp = tmp + cabs1( a( j, i ) )
223 tmp = tmp + cabs1( a( i, j ) )
227 anorm = max( anorm, tmp )
234 tmp = tmp + cabs1( a( i, j ) ) / c( j )
237 tmp = tmp + cabs1( a( j, i ) ) / c( j )
241 tmp = tmp + cabs1( a( i, j ) )
244 tmp = tmp + cabs1( a( j, i ) )
248 anorm = max( anorm, tmp )
257 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
267 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
274 work( i ) = work( i ) * rwork( i )
278 CALL zhetrs(
'U', n, 1, af, ldaf, ipiv,
281 CALL zhetrs(
'L', n, 1, af, ldaf, ipiv,
289 work( i ) = work( i ) * c( i )
298 work( i ) = work( i ) * c( i )
303 CALL zhetrs(
'U', n, 1, af, ldaf, ipiv,
306 CALL zhetrs(
'L', n, 1, af, ldaf, ipiv,
313 work( i ) = work( i ) * rwork( i )
321 IF( ainvnm .NE. 0.0d+0 )
subroutine xerbla(srname, info)
subroutine zhetrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS
double precision function zla_hercond_c(uplo, n, a, lda, af, ldaf, ipiv, c, capply, info, work, rwork)
ZLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
subroutine zlacn2(n, v, x, est, kase, isave)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
logical function lsame(ca, cb)
LSAME