LAPACK  3.10.1
LAPACK: Linear Algebra PACKage

◆ dckcsd()

subroutine dckcsd ( integer  NM,
integer, dimension( * )  MVAL,
integer, dimension( * )  PVAL,
integer, dimension( * )  QVAL,
integer  NMATS,
integer, dimension( 4 )  ISEED,
double precision  THRESH,
integer  MMAX,
double precision, dimension( * )  X,
double precision, dimension( * )  XF,
double precision, dimension( * )  U1,
double precision, dimension( * )  U2,
double precision, dimension( * )  V1T,
double precision, dimension( * )  V2T,
double precision, dimension( * )  THETA,
integer, dimension( * )  IWORK,
double precision, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer  NIN,
integer  NOUT,
integer  INFO 
)

DCKCSD

Purpose:
 DCKCSD tests DORCSD:
        the CSD for an M-by-M orthogonal matrix X partitioned as
        [ X11 X12; X21 X22 ]. X11 is P-by-Q.
Parameters
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]PVAL
          PVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension P.
[in]QVAL
          QVAL is INTEGER array, dimension (NM)
          The values of the matrix column dimension Q.
[in]NMATS
          NMATS is INTEGER
          The number of matrix types to be tested for each combination
          of matrix dimensions.  If NMATS >= NTYPES (the maximum
          number of matrix types), then all the different types are
          generated for testing.  If NMATS < NTYPES, another input line
          is read to get the numbers of the matrix types to be used.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry, the seed of the random number generator.  The array
          elements should be between 0 and 4095, otherwise they will be
          reduced mod 4096, and ISEED(4) must be odd.
          On exit, the next seed in the random number sequence after
          all the test matrices have been generated.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]MMAX
          MMAX is INTEGER
          The maximum value permitted for M, used in dimensioning the
          work arrays.
[out]X
          X is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]XF
          XF is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]U1
          U1 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]U2
          U2 is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]V1T
          V1T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]V2T
          V2T is DOUBLE PRECISION array, dimension (MMAX*MMAX)
[out]THETA
          THETA is DOUBLE PRECISION array, dimension (MMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (MMAX)
[out]WORK
          WORK is DOUBLE PRECISION array
[out]RWORK
          RWORK is DOUBLE PRECISION array
[in]NIN
          NIN is INTEGER
          The unit number for input.
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
[out]INFO
          INFO is INTEGER
          = 0 :  successful exit
          > 0 :  If DLAROR returns an error code, the absolute value
                 of it is returned.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 181 of file dckcsd.f.

184 *
185 * -- LAPACK test routine --
186 * -- LAPACK is a software package provided by Univ. of Tennessee, --
187 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
188 *
189 * .. Scalar Arguments ..
190  INTEGER INFO, NIN, NM, NMATS, MMAX, NOUT
191  DOUBLE PRECISION THRESH
192 * ..
193 * .. Array Arguments ..
194  INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), PVAL( * ),
195  $ QVAL( * )
196  DOUBLE PRECISION RWORK( * ), THETA( * )
197  DOUBLE PRECISION U1( * ), U2( * ), V1T( * ), V2T( * ),
198  $ WORK( * ), X( * ), XF( * )
199 * ..
200 *
201 * =====================================================================
202 *
203 * .. Parameters ..
204  INTEGER NTESTS
205  parameter( ntests = 15 )
206  INTEGER NTYPES
207  parameter( ntypes = 4 )
208  DOUBLE PRECISION GAPDIGIT, ONE, ORTH, TEN, ZERO
209  parameter( gapdigit = 18.0d0, one = 1.0d0,
210  $ orth = 1.0d-12,
211  $ ten = 10.0d0, zero = 0.0d0 )
212  DOUBLE PRECISION PIOVER2
213  parameter( piover2 = 1.57079632679489661923132169163975144210d0 )
214 * ..
215 * .. Local Scalars ..
216  LOGICAL FIRSTT
217  CHARACTER*3 PATH
218  INTEGER I, IINFO, IM, IMAT, J, LDU1, LDU2, LDV1T,
219  $ LDV2T, LDX, LWORK, M, NFAIL, NRUN, NT, P, Q, R
220 * ..
221 * .. Local Arrays ..
222  LOGICAL DOTYPE( NTYPES )
223  DOUBLE PRECISION RESULT( NTESTS )
224 * ..
225 * .. External Subroutines ..
226  EXTERNAL alahdg, alareq, alasum, dcsdts, dlacsg, dlaror,
227  $ dlaset, drot
228 * ..
229 * .. Intrinsic Functions ..
230  INTRINSIC abs, min
231 * ..
232 * .. External Functions ..
233  DOUBLE PRECISION DLARAN, DLARND
234  EXTERNAL dlaran, dlarnd
235 * ..
236 * .. Executable Statements ..
237 *
238 * Initialize constants and the random number seed.
239 *
240  path( 1: 3 ) = 'CSD'
241  info = 0
242  nrun = 0
243  nfail = 0
244  firstt = .true.
245  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
246  ldx = mmax
247  ldu1 = mmax
248  ldu2 = mmax
249  ldv1t = mmax
250  ldv2t = mmax
251  lwork = mmax*mmax
252 *
253 * Do for each value of M in MVAL.
254 *
255  DO 30 im = 1, nm
256  m = mval( im )
257  p = pval( im )
258  q = qval( im )
259 *
260  DO 20 imat = 1, ntypes
261 *
262 * Do the tests only if DOTYPE( IMAT ) is true.
263 *
264  IF( .NOT.dotype( imat ) )
265  $ GO TO 20
266 *
267 * Generate X
268 *
269  IF( imat.EQ.1 ) THEN
270  CALL dlaror( 'L', 'I', m, m, x, ldx, iseed, work, iinfo )
271  IF( m .NE. 0 .AND. iinfo .NE. 0 ) THEN
272  WRITE( nout, fmt = 9999 ) m, iinfo
273  info = abs( iinfo )
274  GO TO 20
275  END IF
276  ELSE IF( imat.EQ.2 ) THEN
277  r = min( p, m-p, q, m-q )
278  DO i = 1, r
279  theta(i) = piover2 * dlarnd( 1, iseed )
280  END DO
281  CALL dlacsg( m, p, q, theta, iseed, x, ldx, work )
282  DO i = 1, m
283  DO j = 1, m
284  x(i+(j-1)*ldx) = x(i+(j-1)*ldx) +
285  $ orth*dlarnd(2,iseed)
286  END DO
287  END DO
288  ELSE IF( imat.EQ.3 ) THEN
289  r = min( p, m-p, q, m-q )
290  DO i = 1, r+1
291  theta(i) = ten**(-dlarnd(1,iseed)*gapdigit)
292  END DO
293  DO i = 2, r+1
294  theta(i) = theta(i-1) + theta(i)
295  END DO
296  DO i = 1, r
297  theta(i) = piover2 * theta(i) / theta(r+1)
298  END DO
299  CALL dlacsg( m, p, q, theta, iseed, x, ldx, work )
300  ELSE
301  CALL dlaset( 'F', m, m, zero, one, x, ldx )
302  DO i = 1, m
303  j = int( dlaran( iseed ) * m ) + 1
304  IF( j .NE. i ) THEN
305  CALL drot( m, x(1+(i-1)*ldx), 1, x(1+(j-1)*ldx), 1,
306  $ zero, one )
307  END IF
308  END DO
309  END IF
310 *
311  nt = 15
312 *
313  CALL dcsdts( m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t,
314  $ ldv1t, v2t, ldv2t, theta, iwork, work, lwork,
315  $ rwork, result )
316 *
317 * Print information about the tests that did not
318 * pass the threshold.
319 *
320  DO 10 i = 1, nt
321  IF( result( i ).GE.thresh ) THEN
322  IF( nfail.EQ.0 .AND. firstt ) THEN
323  firstt = .false.
324  CALL alahdg( nout, path )
325  END IF
326  WRITE( nout, fmt = 9998 )m, p, q, imat, i,
327  $ result( i )
328  nfail = nfail + 1
329  END IF
330  10 CONTINUE
331  nrun = nrun + nt
332  20 CONTINUE
333  30 CONTINUE
334 *
335 * Print a summary of the results.
336 *
337  CALL alasum( path, nout, nfail, nrun, 0 )
338 *
339  9999 FORMAT( ' DLAROR in DCKCSD: M = ', i5, ', INFO = ', i15 )
340  9998 FORMAT( ' M=', i4, ' P=', i4, ', Q=', i4, ', type ', i2,
341  $ ', test ', i2, ', ratio=', g13.6 )
342  RETURN
343 *
344 * End of DCKCSD
345 *
subroutine dlacsg(M, P, Q, THETA, ISEED, X, LDX, WORK)
Definition: dckcsd.f:351
double precision function dlaran(ISEED)
DLARAN
Definition: dlaran.f:67
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: dlaset.f:110
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:90
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:62
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine drot(N, DX, INCX, DY, INCY, C, S)
DROT
Definition: drot.f:92
subroutine dcsdts(M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK, RWORK, RESULT)
DCSDTS
Definition: dcsdts.f:229
double precision function dlarnd(IDIST, ISEED)
DLARND
Definition: dlarnd.f:73
subroutine dlaror(SIDE, INIT, M, N, A, LDA, ISEED, X, INFO)
DLAROR
Definition: dlaror.f:146
Here is the call graph for this function:
Here is the caller graph for this function: