LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cchkq3.f
Go to the documentation of this file.
1*> \brief \b CCHKQ3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
12* THRESH, A, COPYA, S, TAU, WORK, RWORK,
13* IWORK, NOUT )
14*
15* .. Scalar Arguments ..
16* INTEGER NM, NN, NNB, NOUT
17* REAL THRESH
18* ..
19* .. Array Arguments ..
20* LOGICAL DOTYPE( * )
21* INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
22* $ NXVAL( * )
23* REAL S( * ), RWORK( * )
24* COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * )
25* ..
26*
27*
28*> \par Purpose:
29* =============
30*>
31*> \verbatim
32*>
33*> CCHKQ3 tests CGEQP3.
34*> \endverbatim
35*
36* Arguments:
37* ==========
38*
39*> \param[in] DOTYPE
40*> \verbatim
41*> DOTYPE is LOGICAL array, dimension (NTYPES)
42*> The matrix types to be used for testing. Matrices of type j
43*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
44*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
45*> \endverbatim
46*>
47*> \param[in] NM
48*> \verbatim
49*> NM is INTEGER
50*> The number of values of M contained in the vector MVAL.
51*> \endverbatim
52*>
53*> \param[in] MVAL
54*> \verbatim
55*> MVAL is INTEGER array, dimension (NM)
56*> The values of the matrix row dimension M.
57*> \endverbatim
58*>
59*> \param[in] NN
60*> \verbatim
61*> NN is INTEGER
62*> The number of values of N contained in the vector NVAL.
63*> \endverbatim
64*>
65*> \param[in] NVAL
66*> \verbatim
67*> NVAL is INTEGER array, dimension (NN)
68*> The values of the matrix column dimension N.
69*> \endverbatim
70*>
71*> \param[in] NNB
72*> \verbatim
73*> NNB is INTEGER
74*> The number of values of NB and NX contained in the
75*> vectors NBVAL and NXVAL. The blocking parameters are used
76*> in pairs (NB,NX).
77*> \endverbatim
78*>
79*> \param[in] NBVAL
80*> \verbatim
81*> NBVAL is INTEGER array, dimension (NNB)
82*> The values of the blocksize NB.
83*> \endverbatim
84*>
85*> \param[in] NXVAL
86*> \verbatim
87*> NXVAL is INTEGER array, dimension (NNB)
88*> The values of the crossover point NX.
89*> \endverbatim
90*>
91*> \param[in] THRESH
92*> \verbatim
93*> THRESH is REAL
94*> The threshold value for the test ratios. A result is
95*> included in the output file if RESULT >= THRESH. To have
96*> every test ratio printed, use THRESH = 0.
97*> \endverbatim
98*>
99*> \param[out] A
100*> \verbatim
101*> A is COMPLEX array, dimension (MMAX*NMAX)
102*> where MMAX is the maximum value of M in MVAL and NMAX is the
103*> maximum value of N in NVAL.
104*> \endverbatim
105*>
106*> \param[out] COPYA
107*> \verbatim
108*> COPYA is COMPLEX array, dimension (MMAX*NMAX)
109*> \endverbatim
110*>
111*> \param[out] S
112*> \verbatim
113*> S is REAL array, dimension
114*> (min(MMAX,NMAX))
115*> \endverbatim
116*>
117*> \param[out] TAU
118*> \verbatim
119*> TAU is COMPLEX array, dimension (MMAX)
120*> \endverbatim
121*>
122*> \param[out] WORK
123*> \verbatim
124*> WORK is COMPLEX array, dimension
125*> (max(M*max(M,N) + 4*min(M,N) + max(M,N)))
126*> \endverbatim
127*>
128*> \param[out] RWORK
129*> \verbatim
130*> RWORK is REAL array, dimension (4*NMAX)
131*> \endverbatim
132*>
133*> \param[out] IWORK
134*> \verbatim
135*> IWORK is INTEGER array, dimension (2*NMAX)
136*> \endverbatim
137*>
138*> \param[in] NOUT
139*> \verbatim
140*> NOUT is INTEGER
141*> The unit number for output.
142*> \endverbatim
143*
144* Authors:
145* ========
146*
147*> \author Univ. of Tennessee
148*> \author Univ. of California Berkeley
149*> \author Univ. of Colorado Denver
150*> \author NAG Ltd.
151*
152*> \ingroup complex_lin
153*
154* =====================================================================
155 SUBROUTINE cchkq3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
156 $ THRESH, A, COPYA, S, TAU, WORK, RWORK,
157 $ IWORK, NOUT )
158*
159* -- LAPACK test routine --
160* -- LAPACK is a software package provided by Univ. of Tennessee, --
161* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162*
163* .. Scalar Arguments ..
164 INTEGER NM, NN, NNB, NOUT
165 REAL THRESH
166* ..
167* .. Array Arguments ..
168 LOGICAL DOTYPE( * )
169 INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
170 $ nxval( * )
171 REAL S( * ), RWORK( * )
172 COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * )
173* ..
174*
175* =====================================================================
176*
177* .. Parameters ..
178 INTEGER NTYPES
179 PARAMETER ( NTYPES = 6 )
180 INTEGER NTESTS
181 parameter( ntests = 3 )
182 REAL ONE, ZERO
183 COMPLEX CZERO
184 parameter( one = 1.0e+0, zero = 0.0e+0,
185 $ czero = ( 0.0e+0, 0.0e+0 ) )
186* ..
187* .. Local Scalars ..
188 CHARACTER*3 PATH
189 INTEGER I, IHIGH, ILOW, IM, IMODE, IN, INB, INFO,
190 $ istep, k, lda, lw, lwork, m, mnmin, mode, n,
191 $ nb, nerrs, nfail, nrun, nx
192 REAL EPS
193* ..
194* .. Local Arrays ..
195 INTEGER ISEED( 4 ), ISEEDY( 4 )
196 REAL RESULT( NTESTS )
197* ..
198* .. External Functions ..
199 REAL CQPT01, CQRT11, CQRT12, SLAMCH
200 EXTERNAL CQPT01, CQRT11, CQRT12, SLAMCH
201* ..
202* .. External Subroutines ..
203 EXTERNAL alahd, alasum, cgeqp3, clacpy, claset, clatms,
205* ..
206* .. Intrinsic Functions ..
207 INTRINSIC max, min
208* ..
209* .. Scalars in Common ..
210 LOGICAL LERR, OK
211 CHARACTER*32 SRNAMT
212 INTEGER INFOT, IOUNIT
213* ..
214* .. Common blocks ..
215 COMMON / infoc / infot, iounit, ok, lerr
216 COMMON / srnamc / srnamt
217* ..
218* .. Data statements ..
219 DATA iseedy / 1988, 1989, 1990, 1991 /
220* ..
221* .. Executable Statements ..
222*
223* Initialize constants and the random number seed.
224*
225 path( 1: 1 ) = 'Complex precision'
226 path( 2: 3 ) = 'Q3'
227 nrun = 0
228 nfail = 0
229 nerrs = 0
230 DO 10 i = 1, 4
231 iseed( i ) = iseedy( i )
232 10 CONTINUE
233 eps = slamch( 'Epsilon' )
234 infot = 0
235*
236 DO 90 im = 1, nm
237*
238* Do for each value of M in MVAL.
239*
240 m = mval( im )
241 lda = max( 1, m )
242*
243 DO 80 in = 1, nn
244*
245* Do for each value of N in NVAL.
246*
247 n = nval( in )
248 mnmin = min( m, n )
249 lwork = max( 1, m*max( m, n )+4*mnmin+max( m, n ) )
250*
251 DO 70 imode = 1, ntypes
252 IF( .NOT.dotype( imode ) )
253 $ GO TO 70
254*
255* Do for each type of matrix
256* 1: zero matrix
257* 2: one small singular value
258* 3: geometric distribution of singular values
259* 4: first n/2 columns fixed
260* 5: last n/2 columns fixed
261* 6: every second column fixed
262*
263 mode = imode
264 IF( imode.GT.3 )
265 $ mode = 1
266*
267* Generate test matrix of size m by n using
268* singular value distribution indicated by `mode'.
269*
270 DO 20 i = 1, n
271 iwork( i ) = 0
272 20 CONTINUE
273 IF( imode.EQ.1 ) THEN
274 CALL claset( 'Full', m, n, czero, czero, copya, lda )
275 DO 30 i = 1, mnmin
276 s( i ) = zero
277 30 CONTINUE
278 ELSE
279 CALL clatms( m, n, 'Uniform', iseed, 'Nonsymm', s,
280 $ mode, one / eps, one, m, n, 'No packing',
281 $ copya, lda, work, info )
282 IF( imode.GE.4 ) THEN
283 IF( imode.EQ.4 ) THEN
284 ilow = 1
285 istep = 1
286 ihigh = max( 1, n / 2 )
287 ELSE IF( imode.EQ.5 ) THEN
288 ilow = max( 1, n / 2 )
289 istep = 1
290 ihigh = n
291 ELSE IF( imode.EQ.6 ) THEN
292 ilow = 1
293 istep = 2
294 ihigh = n
295 END IF
296 DO 40 i = ilow, ihigh, istep
297 iwork( i ) = 1
298 40 CONTINUE
299 END IF
300 CALL slaord( 'Decreasing', mnmin, s, 1 )
301 END IF
302*
303 DO 60 inb = 1, nnb
304*
305* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
306*
307 nb = nbval( inb )
308 CALL xlaenv( 1, nb )
309 nx = nxval( inb )
310 CALL xlaenv( 3, nx )
311*
312* Save A and its singular values and a copy of
313* vector IWORK.
314*
315 CALL clacpy( 'All', m, n, copya, lda, a, lda )
316 CALL icopy( n, iwork( 1 ), 1, iwork( n+1 ), 1 )
317*
318* Workspace needed.
319*
320 lw = nb*( n+1 )
321*
322 srnamt = 'CGEQP3'
323 CALL cgeqp3( m, n, a, lda, iwork( n+1 ), tau, work,
324 $ lw, rwork, info )
325*
326* Compute norm(svd(a) - svd(r))
327*
328 result( 1 ) = cqrt12( m, n, a, lda, s, work,
329 $ lwork, rwork )
330*
331* Compute norm( A*P - Q*R )
332*
333 result( 2 ) = cqpt01( m, n, mnmin, copya, a, lda, tau,
334 $ iwork( n+1 ), work, lwork )
335*
336* Compute Q'*Q
337*
338 result( 3 ) = cqrt11( m, mnmin, a, lda, tau, work,
339 $ lwork )
340*
341* Print information about the tests that did not pass
342* the threshold.
343*
344 DO 50 k = 1, ntests
345 IF( result( k ).GE.thresh ) THEN
346 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
347 $ CALL alahd( nout, path )
348 WRITE( nout, fmt = 9999 )'CGEQP3', m, n, nb,
349 $ imode, k, result( k )
350 nfail = nfail + 1
351 END IF
352 50 CONTINUE
353 nrun = nrun + ntests
354*
355 60 CONTINUE
356 70 CONTINUE
357 80 CONTINUE
358 90 CONTINUE
359*
360* Print a summary of the results.
361*
362 CALL alasum( path, nout, nfail, nrun, nerrs )
363*
364 9999 FORMAT( 1x, a, ' M =', i5, ', N =', i5, ', NB =', i4, ', type ',
365 $ i2, ', test ', i2, ', ratio =', g12.5 )
366*
367* End of CCHKQ3
368*
369 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cchkq3(dotype, nm, mval, nn, nval, nnb, nbval, nxval, thresh, a, copya, s, tau, work, rwork, iwork, nout)
CCHKQ3
Definition cchkq3.f:158
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cgeqp3(m, n, a, lda, jpvt, tau, work, lwork, rwork, info)
CGEQP3
Definition cgeqp3.f:159
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine icopy(n, sx, incx, sy, incy)
ICOPY
Definition icopy.f:75
subroutine slaord(job, n, x, incx)
SLAORD
Definition slaord.f:73