LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dggrqf()

subroutine dggrqf ( integer  m,
integer  p,
integer  n,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( * )  taua,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( * )  taub,
double precision, dimension( * )  work,
integer  lwork,
integer  info 
)

DGGRQF

Download DGGRQF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGGRQF computes a generalized RQ factorization of an M-by-N matrix A
 and a P-by-N matrix B:

             A = R*Q,        B = Z*T*Q,

 where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
 matrix, and R and T assume one of the forms:

 if M <= N,  R = ( 0  R12 ) M,   or if M > N,  R = ( R11 ) M-N,
                  N-M  M                           ( R21 ) N
                                                      N

 where R12 or R21 is upper triangular, and

 if P >= N,  T = ( T11 ) N  ,   or if P < N,  T = ( T11  T12 ) P,
                 (  0  ) P-N                         P   N-P
                    N

 where T11 is upper triangular.

 In particular, if B is square and nonsingular, the GRQ factorization
 of A and B implicitly gives the RQ factorization of A*inv(B):

              A*inv(B) = (R*inv(T))*Z**T

 where inv(B) denotes the inverse of the matrix B, and Z**T denotes the
 transpose of the matrix Z.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B. N >= 0.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, if M <= N, the upper triangle of the subarray
          A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R;
          if M > N, the elements on and above the (M-N)-th subdiagonal
          contain the M-by-N upper trapezoidal matrix R; the remaining
          elements, with the array TAUA, represent the orthogonal
          matrix Q as a product of elementary reflectors (see Further
          Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[out]TAUA
          TAUA is DOUBLE PRECISION array, dimension (min(M,N))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Q (see Further Details).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, the elements on and above the diagonal of the array
          contain the min(P,N)-by-N upper trapezoidal matrix T (T is
          upper triangular if P >= N); the elements below the diagonal,
          with the array TAUB, represent the orthogonal matrix Z as a
          product of elementary reflectors (see Further Details).
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]TAUB
          TAUB is DOUBLE PRECISION array, dimension (min(P,N))
          The scalar factors of the elementary reflectors which
          represent the orthogonal matrix Z (see Further Details).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= max(1,N,M,P).
          For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3),
          where NB1 is the optimal blocksize for the RQ factorization
          of an M-by-N matrix, NB2 is the optimal blocksize for the
          QR factorization of a P-by-N matrix, and NB3 is the optimal
          blocksize for a call of DORMRQ.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INF0= -i, the i-th argument had an illegal value.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(1) H(2) . . . H(k), where k = min(m,n).

  Each H(i) has the form

     H(i) = I - taua * v * v**T

  where taua is a real scalar, and v is a real vector with
  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  A(m-k+i,1:n-k+i-1), and taua in TAUA(i).
  To form Q explicitly, use LAPACK subroutine DORGRQ.
  To use Q to update another matrix, use LAPACK subroutine DORMRQ.

  The matrix Z is represented as a product of elementary reflectors

     Z = H(1) H(2) . . . H(k), where k = min(p,n).

  Each H(i) has the form

     H(i) = I - taub * v * v**T

  where taub is a real scalar, and v is a real vector with
  v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i),
  and taub in TAUB(i).
  To form Z explicitly, use LAPACK subroutine DORGQR.
  To use Z to update another matrix, use LAPACK subroutine DORMQR.

Definition at line 212 of file dggrqf.f.

214*
215* -- LAPACK computational routine --
216* -- LAPACK is a software package provided by Univ. of Tennessee, --
217* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
218*
219* .. Scalar Arguments ..
220 INTEGER INFO, LDA, LDB, LWORK, M, N, P
221* ..
222* .. Array Arguments ..
223 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ),
224 $ WORK( * )
225* ..
226*
227* =====================================================================
228*
229* .. Local Scalars ..
230 LOGICAL LQUERY
231 INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3
232* ..
233* .. External Subroutines ..
234 EXTERNAL dgeqrf, dgerqf, dormrq, xerbla
235* ..
236* .. External Functions ..
237 INTEGER ILAENV
238 EXTERNAL ilaenv
239* ..
240* .. Intrinsic Functions ..
241 INTRINSIC int, max, min
242* ..
243* .. Executable Statements ..
244*
245* Test the input parameters
246*
247 info = 0
248 nb1 = ilaenv( 1, 'DGERQF', ' ', m, n, -1, -1 )
249 nb2 = ilaenv( 1, 'DGEQRF', ' ', p, n, -1, -1 )
250 nb3 = ilaenv( 1, 'DORMRQ', ' ', m, n, p, -1 )
251 nb = max( nb1, nb2, nb3 )
252 lwkopt = max( n, m, p )*nb
253 work( 1 ) = lwkopt
254 lquery = ( lwork.EQ.-1 )
255 IF( m.LT.0 ) THEN
256 info = -1
257 ELSE IF( p.LT.0 ) THEN
258 info = -2
259 ELSE IF( n.LT.0 ) THEN
260 info = -3
261 ELSE IF( lda.LT.max( 1, m ) ) THEN
262 info = -5
263 ELSE IF( ldb.LT.max( 1, p ) ) THEN
264 info = -8
265 ELSE IF( lwork.LT.max( 1, m, p, n ) .AND. .NOT.lquery ) THEN
266 info = -11
267 END IF
268 IF( info.NE.0 ) THEN
269 CALL xerbla( 'DGGRQF', -info )
270 RETURN
271 ELSE IF( lquery ) THEN
272 RETURN
273 END IF
274*
275* RQ factorization of M-by-N matrix A: A = R*Q
276*
277 CALL dgerqf( m, n, a, lda, taua, work, lwork, info )
278 lopt = int( work( 1 ) )
279*
280* Update B := B*Q**T
281*
282 CALL dormrq( 'Right', 'Transpose', p, n, min( m, n ),
283 $ a( max( 1, m-n+1 ), 1 ), lda, taua, b, ldb, work,
284 $ lwork, info )
285 lopt = max( lopt, int( work( 1 ) ) )
286*
287* QR factorization of P-by-N matrix B: B = Z*T
288*
289 CALL dgeqrf( p, n, b, ldb, taub, work, lwork, info )
290 work( 1 ) = max( lopt, int( work( 1 ) ) )
291*
292 RETURN
293*
294* End of DGGRQF
295*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeqrf(m, n, a, lda, tau, work, lwork, info)
DGEQRF
Definition dgeqrf.f:146
subroutine dgerqf(m, n, a, lda, tau, work, lwork, info)
DGERQF
Definition dgerqf.f:139
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:162
subroutine dormrq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMRQ
Definition dormrq.f:167
Here is the call graph for this function:
Here is the caller graph for this function: