LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ zgtsvx()

subroutine zgtsvx ( character fact,
character trans,
integer n,
integer nrhs,
complex*16, dimension( * ) dl,
complex*16, dimension( * ) d,
complex*16, dimension( * ) du,
complex*16, dimension( * ) dlf,
complex*16, dimension( * ) df,
complex*16, dimension( * ) duf,
complex*16, dimension( * ) du2,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldx, * ) x,
integer ldx,
double precision rcond,
double precision, dimension( * ) ferr,
double precision, dimension( * ) berr,
complex*16, dimension( * ) work,
double precision, dimension( * ) rwork,
integer info )

ZGTSVX computes the solution to system of linear equations A * X = B for GT matrices

Download ZGTSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> ZGTSVX uses the LU factorization to compute the solution to a complex !> system of linear equations A * X = B, A**T * X = B, or A**H * X = B, !> where A is a tridiagonal matrix of order N and X and B are N-by-NRHS !> matrices. !> !> Error bounds on the solution and a condition estimate are also !> provided. !>
Description:
!> !> The following steps are performed: !> !> 1. If FACT = 'N', the LU decomposition is used to factor the matrix A !> as A = L * U, where L is a product of permutation and unit lower !> bidiagonal matrices and U is upper triangular with nonzeros in !> only the main diagonal and first two superdiagonals. !> !> 2. If some U(i,i)=0, so that U is exactly singular, then the routine !> returns with INFO = i. Otherwise, the factored form of A is used !> to estimate the condition number of the matrix A. If the !> reciprocal of the condition number is less than machine precision, !> INFO = N+1 is returned as a warning, but the routine still goes on !> to solve for X and compute error bounds as described below. !> !> 3. The system of equations is solved for X using the factored form !> of A. !> !> 4. Iterative refinement is applied to improve the computed solution !> matrix and calculate error bounds and backward error estimates !> for it. !>
Parameters
[in]FACT
!> FACT is CHARACTER*1 !> Specifies whether or not the factored form of A has been !> supplied on entry. !> = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored form !> of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not !> be modified. !> = 'N': The matrix will be copied to DLF, DF, and DUF !> and factored. !>
[in]TRANS
!> TRANS is CHARACTER*1 !> Specifies the form of the system of equations: !> = 'N': A * X = B (No transpose) !> = 'T': A**T * X = B (Transpose) !> = 'C': A**H * X = B (Conjugate transpose) !>
[in]N
!> N is INTEGER !> The order of the matrix A. N >= 0. !>
[in]NRHS
!> NRHS is INTEGER !> The number of right hand sides, i.e., the number of columns !> of the matrix B. NRHS >= 0. !>
[in]DL
!> DL is COMPLEX*16 array, dimension (N-1) !> The (n-1) subdiagonal elements of A. !>
[in]D
!> D is COMPLEX*16 array, dimension (N) !> The n diagonal elements of A. !>
[in]DU
!> DU is COMPLEX*16 array, dimension (N-1) !> The (n-1) superdiagonal elements of A. !>
[in,out]DLF
!> DLF is COMPLEX*16 array, dimension (N-1) !> If FACT = 'F', then DLF is an input argument and on entry !> contains the (n-1) multipliers that define the matrix L from !> the LU factorization of A as computed by ZGTTRF. !> !> If FACT = 'N', then DLF is an output argument and on exit !> contains the (n-1) multipliers that define the matrix L from !> the LU factorization of A. !>
[in,out]DF
!> DF is COMPLEX*16 array, dimension (N) !> If FACT = 'F', then DF is an input argument and on entry !> contains the n diagonal elements of the upper triangular !> matrix U from the LU factorization of A. !> !> If FACT = 'N', then DF is an output argument and on exit !> contains the n diagonal elements of the upper triangular !> matrix U from the LU factorization of A. !>
[in,out]DUF
!> DUF is COMPLEX*16 array, dimension (N-1) !> If FACT = 'F', then DUF is an input argument and on entry !> contains the (n-1) elements of the first superdiagonal of U. !> !> If FACT = 'N', then DUF is an output argument and on exit !> contains the (n-1) elements of the first superdiagonal of U. !>
[in,out]DU2
!> DU2 is COMPLEX*16 array, dimension (N-2) !> If FACT = 'F', then DU2 is an input argument and on entry !> contains the (n-2) elements of the second superdiagonal of !> U. !> !> If FACT = 'N', then DU2 is an output argument and on exit !> contains the (n-2) elements of the second superdiagonal of !> U. !>
[in,out]IPIV
!> IPIV is INTEGER array, dimension (N) !> If FACT = 'F', then IPIV is an input argument and on entry !> contains the pivot indices from the LU factorization of A as !> computed by ZGTTRF. !> !> If FACT = 'N', then IPIV is an output argument and on exit !> contains the pivot indices from the LU factorization of A; !> row i of the matrix was interchanged with row IPIV(i). !> IPIV(i) will always be either i or i+1; IPIV(i) = i indicates !> a row interchange was not required. !>
[in]B
!> B is COMPLEX*16 array, dimension (LDB,NRHS) !> The N-by-NRHS right hand side matrix B. !>
[in]LDB
!> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,N). !>
[out]X
!> X is COMPLEX*16 array, dimension (LDX,NRHS) !> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. !>
[in]LDX
!> LDX is INTEGER !> The leading dimension of the array X. LDX >= max(1,N). !>
[out]RCOND
!> RCOND is DOUBLE PRECISION !> The estimate of the reciprocal condition number of the matrix !> A. If RCOND is less than the machine precision (in !> particular, if RCOND = 0), the matrix is singular to working !> precision. This condition is indicated by a return code of !> INFO > 0. !>
[out]FERR
!> FERR is DOUBLE PRECISION array, dimension (NRHS) !> The estimated forward error bound for each solution vector !> X(j) (the j-th column of the solution matrix X). !> If XTRUE is the true solution corresponding to X(j), FERR(j) !> is an estimated upper bound for the magnitude of the largest !> element in (X(j) - XTRUE) divided by the magnitude of the !> largest element in X(j). The estimate is as reliable as !> the estimate for RCOND, and is almost always a slight !> overestimate of the true error. !>
[out]BERR
!> BERR is DOUBLE PRECISION array, dimension (NRHS) !> The componentwise relative backward error of each solution !> vector X(j) (i.e., the smallest relative change in !> any element of A or B that makes X(j) an exact solution). !>
[out]WORK
!> WORK is COMPLEX*16 array, dimension (2*N) !>
[out]RWORK
!> RWORK is DOUBLE PRECISION array, dimension (N) !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, and i is !> <= N: U(i,i) is exactly zero. The factorization !> has not been completed unless i = N, but the !> factor U is exactly singular, so the solution !> and error bounds could not be computed. !> RCOND = 0 is returned. !> = N+1: U is nonsingular, but RCOND is less than machine !> precision, meaning that the matrix is singular !> to working precision. Nevertheless, the !> solution and error bounds are computed because !> there are a number of situations where the !> computed solution can be more accurate than the !> value of RCOND would suggest. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 289 of file zgtsvx.f.

293*
294* -- LAPACK driver routine --
295* -- LAPACK is a software package provided by Univ. of Tennessee, --
296* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
297*
298* .. Scalar Arguments ..
299 CHARACTER FACT, TRANS
300 INTEGER INFO, LDB, LDX, N, NRHS
301 DOUBLE PRECISION RCOND
302* ..
303* .. Array Arguments ..
304 INTEGER IPIV( * )
305 DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * )
306 COMPLEX*16 B( LDB, * ), D( * ), DF( * ), DL( * ),
307 $ DLF( * ), DU( * ), DU2( * ), DUF( * ),
308 $ WORK( * ), X( LDX, * )
309* ..
310*
311* =====================================================================
312*
313* .. Parameters ..
314 DOUBLE PRECISION ZERO
315 parameter( zero = 0.0d+0 )
316* ..
317* .. Local Scalars ..
318 LOGICAL NOFACT, NOTRAN
319 CHARACTER NORM
320 DOUBLE PRECISION ANORM
321* ..
322* .. External Functions ..
323 LOGICAL LSAME
324 DOUBLE PRECISION DLAMCH, ZLANGT
325 EXTERNAL lsame, dlamch, zlangt
326* ..
327* .. External Subroutines ..
328 EXTERNAL xerbla, zcopy, zgtcon, zgtrfs, zgttrf,
329 $ zgttrs,
330 $ zlacpy
331* ..
332* .. Intrinsic Functions ..
333 INTRINSIC max
334* ..
335* .. Executable Statements ..
336*
337 info = 0
338 nofact = lsame( fact, 'N' )
339 notran = lsame( trans, 'N' )
340 IF( .NOT.nofact .AND. .NOT.lsame( fact, 'F' ) ) THEN
341 info = -1
342 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
343 $ lsame( trans, 'C' ) ) THEN
344 info = -2
345 ELSE IF( n.LT.0 ) THEN
346 info = -3
347 ELSE IF( nrhs.LT.0 ) THEN
348 info = -4
349 ELSE IF( ldb.LT.max( 1, n ) ) THEN
350 info = -14
351 ELSE IF( ldx.LT.max( 1, n ) ) THEN
352 info = -16
353 END IF
354 IF( info.NE.0 ) THEN
355 CALL xerbla( 'ZGTSVX', -info )
356 RETURN
357 END IF
358*
359 IF( nofact ) THEN
360*
361* Compute the LU factorization of A.
362*
363 CALL zcopy( n, d, 1, df, 1 )
364 IF( n.GT.1 ) THEN
365 CALL zcopy( n-1, dl, 1, dlf, 1 )
366 CALL zcopy( n-1, du, 1, duf, 1 )
367 END IF
368 CALL zgttrf( n, dlf, df, duf, du2, ipiv, info )
369*
370* Return if INFO is non-zero.
371*
372 IF( info.GT.0 )THEN
373 rcond = zero
374 RETURN
375 END IF
376 END IF
377*
378* Compute the norm of the matrix A.
379*
380 IF( notran ) THEN
381 norm = '1'
382 ELSE
383 norm = 'I'
384 END IF
385 anorm = zlangt( norm, n, dl, d, du )
386*
387* Compute the reciprocal of the condition number of A.
388*
389 CALL zgtcon( norm, n, dlf, df, duf, du2, ipiv, anorm, rcond,
390 $ work,
391 $ info )
392*
393* Compute the solution vectors X.
394*
395 CALL zlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
396 CALL zgttrs( trans, n, nrhs, dlf, df, duf, du2, ipiv, x, ldx,
397 $ info )
398*
399* Use iterative refinement to improve the computed solutions and
400* compute error bounds and backward error estimates for them.
401*
402 CALL zgtrfs( trans, n, nrhs, dl, d, du, dlf, df, duf, du2,
403 $ ipiv,
404 $ b, ldb, x, ldx, ferr, berr, work, rwork, info )
405*
406* Set INFO = N+1 if the matrix is singular to working precision.
407*
408 IF( rcond.LT.dlamch( 'Epsilon' ) )
409 $ info = n + 1
410*
411 RETURN
412*
413* End of ZGTSVX
414*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgtcon(norm, n, dl, d, du, du2, ipiv, anorm, rcond, work, info)
ZGTCON
Definition zgtcon.f:139
subroutine zgtrfs(trans, n, nrhs, dl, d, du, dlf, df, duf, du2, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZGTRFS
Definition zgtrfs.f:209
subroutine zgttrf(n, dl, d, du, du2, ipiv, info)
ZGTTRF
Definition zgttrf.f:122
subroutine zgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
ZGTTRS
Definition zgttrs.f:137
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function zlangt(norm, n, dl, d, du)
ZLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition zlangt.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: