LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctrt05()

subroutine ctrt05 ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
complex, dimension( ldxact, * ) xact,
integer ldxact,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) reslts )

CTRT05

Purpose:
!>
!> CTRT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> triangular n by n matrix.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
!>             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower triangular.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B  (No transpose)
!>          = 'T':  A'* X = B  (Transpose)
!>          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A is unit triangular.
!>          = 'N':  Non-unit triangular
!>          = 'U':  Unit triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X, B, and XACT, and the
!>          order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X, B, and XACT.
!>          NRHS >= 0.
!> 
[in]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          The triangular matrix A.  If UPLO = 'U', the leading n by n
!>          upper triangular part of the array A contains the upper
!>          triangular matrix, and the strictly lower triangular part of
!>          A is not referenced.  If UPLO = 'L', the leading n by n lower
!>          triangular part of the array A contains the lower triangular
!>          matrix, and the strictly upper triangular part of A is not
!>          referenced.  If DIAG = 'U', the diagonal elements of A are
!>          also not referenced and are assumed to be 1.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is COMPLEX array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is REAL array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 180 of file ctrt05.f.

182*
183* -- LAPACK test routine --
184* -- LAPACK is a software package provided by Univ. of Tennessee, --
185* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
186*
187* .. Scalar Arguments ..
188 CHARACTER DIAG, TRANS, UPLO
189 INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
190* ..
191* .. Array Arguments ..
192 REAL BERR( * ), FERR( * ), RESLTS( * )
193 COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ),
194 $ XACT( LDXACT, * )
195* ..
196*
197* =====================================================================
198*
199* .. Parameters ..
200 REAL ZERO, ONE
201 parameter( zero = 0.0e+0, one = 1.0e+0 )
202* ..
203* .. Local Scalars ..
204 LOGICAL NOTRAN, UNIT, UPPER
205 INTEGER I, IFU, IMAX, J, K
206 REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
207 COMPLEX ZDUM
208* ..
209* .. External Functions ..
210 LOGICAL LSAME
211 INTEGER ICAMAX
212 REAL SLAMCH
213 EXTERNAL lsame, icamax, slamch
214* ..
215* .. Intrinsic Functions ..
216 INTRINSIC abs, aimag, max, min, real
217* ..
218* .. Statement Functions ..
219 REAL CABS1
220* ..
221* .. Statement Function definitions ..
222 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
223* ..
224* .. Executable Statements ..
225*
226* Quick exit if N = 0 or NRHS = 0.
227*
228 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
229 reslts( 1 ) = zero
230 reslts( 2 ) = zero
231 RETURN
232 END IF
233*
234 eps = slamch( 'Epsilon' )
235 unfl = slamch( 'Safe minimum' )
236 ovfl = one / unfl
237 upper = lsame( uplo, 'U' )
238 notran = lsame( trans, 'N' )
239 unit = lsame( diag, 'U' )
240*
241* Test 1: Compute the maximum of
242* norm(X - XACT) / ( norm(X) * FERR )
243* over all the vectors X and XACT using the infinity-norm.
244*
245 errbnd = zero
246 DO 30 j = 1, nrhs
247 imax = icamax( n, x( 1, j ), 1 )
248 xnorm = max( cabs1( x( imax, j ) ), unfl )
249 diff = zero
250 DO 10 i = 1, n
251 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
252 10 CONTINUE
253*
254 IF( xnorm.GT.one ) THEN
255 GO TO 20
256 ELSE IF( diff.LE.ovfl*xnorm ) THEN
257 GO TO 20
258 ELSE
259 errbnd = one / eps
260 GO TO 30
261 END IF
262*
263 20 CONTINUE
264 IF( diff / xnorm.LE.ferr( j ) ) THEN
265 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
266 ELSE
267 errbnd = one / eps
268 END IF
269 30 CONTINUE
270 reslts( 1 ) = errbnd
271*
272* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
273* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
274*
275 ifu = 0
276 IF( unit )
277 $ ifu = 1
278 DO 90 k = 1, nrhs
279 DO 80 i = 1, n
280 tmp = cabs1( b( i, k ) )
281 IF( upper ) THEN
282 IF( .NOT.notran ) THEN
283 DO 40 j = 1, i - ifu
284 tmp = tmp + cabs1( a( j, i ) )*cabs1( x( j, k ) )
285 40 CONTINUE
286 IF( unit )
287 $ tmp = tmp + cabs1( x( i, k ) )
288 ELSE
289 IF( unit )
290 $ tmp = tmp + cabs1( x( i, k ) )
291 DO 50 j = i + ifu, n
292 tmp = tmp + cabs1( a( i, j ) )*cabs1( x( j, k ) )
293 50 CONTINUE
294 END IF
295 ELSE
296 IF( notran ) THEN
297 DO 60 j = 1, i - ifu
298 tmp = tmp + cabs1( a( i, j ) )*cabs1( x( j, k ) )
299 60 CONTINUE
300 IF( unit )
301 $ tmp = tmp + cabs1( x( i, k ) )
302 ELSE
303 IF( unit )
304 $ tmp = tmp + cabs1( x( i, k ) )
305 DO 70 j = i + ifu, n
306 tmp = tmp + cabs1( a( j, i ) )*cabs1( x( j, k ) )
307 70 CONTINUE
308 END IF
309 END IF
310 IF( i.EQ.1 ) THEN
311 axbi = tmp
312 ELSE
313 axbi = min( axbi, tmp )
314 END IF
315 80 CONTINUE
316 tmp = berr( k ) / ( ( n+1 )*eps+( n+1 )*unfl /
317 $ max( axbi, ( n+1 )*unfl ) )
318 IF( k.EQ.1 ) THEN
319 reslts( 2 ) = tmp
320 ELSE
321 reslts( 2 ) = max( reslts( 2 ), tmp )
322 END IF
323 90 CONTINUE
324*
325 RETURN
326*
327* End of CTRT05
328*
integer function icamax(n, cx, incx)
ICAMAX
Definition icamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: