LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zunmqr()

 subroutine zunmqr ( character SIDE, character TRANS, integer M, integer N, integer K, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( ldc, * ) C, integer LDC, complex*16, dimension( * ) WORK, integer LWORK, integer INFO )

ZUNMQR

Purpose:
``` ZUNMQR overwrites the general complex M-by-N matrix C with

SIDE = 'L'     SIDE = 'R'
TRANS = 'N':      Q * C          C * Q
TRANS = 'C':      Q**H * C       C * Q**H

where Q is a complex unitary matrix defined as the product of k
elementary reflectors

Q = H(1) H(2) . . . H(k)

as returned by ZGEQRF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.```
Parameters
 [in] SIDE ``` SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.``` [in] TRANS ``` TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.``` [in] M ``` M is INTEGER The number of rows of the matrix C. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix C. N >= 0.``` [in] K ``` K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.``` [in] A ``` A is COMPLEX*16 array, dimension (LDA,K) The i-th column must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by ZGEQRF in the first k columns of its array argument A.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,M); if SIDE = 'R', LDA >= max(1,N).``` [in] TAU ``` TAU is COMPLEX*16 array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by ZGEQRF.``` [in,out] C ``` C is COMPLEX*16 array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.``` [in] LDC ``` LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).``` [out] WORK ``` WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.``` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```

Definition at line 165 of file zunmqr.f.

167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171*
172* .. Scalar Arguments ..
173 CHARACTER SIDE, TRANS
174 INTEGER INFO, K, LDA, LDC, LWORK, M, N
175* ..
176* .. Array Arguments ..
177 COMPLEX*16 A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
178* ..
179*
180* =====================================================================
181*
182* .. Parameters ..
183 INTEGER NBMAX, LDT, TSIZE
184 parameter( nbmax = 64, ldt = nbmax+1,
185 \$ tsize = ldt*nbmax )
186* ..
187* .. Local Scalars ..
188 LOGICAL LEFT, LQUERY, NOTRAN
189 INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
190 \$ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
191* ..
192* .. External Functions ..
193 LOGICAL LSAME
194 INTEGER ILAENV
195 EXTERNAL lsame, ilaenv
196* ..
197* .. External Subroutines ..
198 EXTERNAL xerbla, zlarfb, zlarft, zunm2r
199* ..
200* .. Intrinsic Functions ..
201 INTRINSIC max, min
202* ..
203* .. Executable Statements ..
204*
205* Test the input arguments
206*
207 info = 0
208 left = lsame( side, 'L' )
209 notran = lsame( trans, 'N' )
210 lquery = ( lwork.EQ.-1 )
211*
212* NQ is the order of Q and NW is the minimum dimension of WORK
213*
214 IF( left ) THEN
215 nq = m
216 nw = max( 1, n )
217 ELSE
218 nq = n
219 nw = max( 1, m )
220 END IF
221 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
222 info = -1
223 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
224 info = -2
225 ELSE IF( m.LT.0 ) THEN
226 info = -3
227 ELSE IF( n.LT.0 ) THEN
228 info = -4
229 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
230 info = -5
231 ELSE IF( lda.LT.max( 1, nq ) ) THEN
232 info = -7
233 ELSE IF( ldc.LT.max( 1, m ) ) THEN
234 info = -10
235 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
236 info = -12
237 END IF
238*
239 IF( info.EQ.0 ) THEN
240*
241* Compute the workspace requirements
242*
243 nb = min( nbmax, ilaenv( 1, 'ZUNMQR', side // trans, m, n, k,
244 \$ -1 ) )
245 lwkopt = nw*nb + tsize
246 work( 1 ) = lwkopt
247 END IF
248*
249 IF( info.NE.0 ) THEN
250 CALL xerbla( 'ZUNMQR', -info )
251 RETURN
252 ELSE IF( lquery ) THEN
253 RETURN
254 END IF
255*
256* Quick return if possible
257*
258 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
259 work( 1 ) = 1
260 RETURN
261 END IF
262*
263 nbmin = 2
264 ldwork = nw
265 IF( nb.GT.1 .AND. nb.LT.k ) THEN
266 IF( lwork.LT.lwkopt ) THEN
267 nb = (lwork-tsize) / ldwork
268 nbmin = max( 2, ilaenv( 2, 'ZUNMQR', side // trans, m, n, k,
269 \$ -1 ) )
270 END IF
271 END IF
272*
273 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
274*
275* Use unblocked code
276*
277 CALL zunm2r( side, trans, m, n, k, a, lda, tau, c, ldc, work,
278 \$ iinfo )
279 ELSE
280*
281* Use blocked code
282*
283 iwt = 1 + nw*nb
284 IF( ( left .AND. .NOT.notran ) .OR.
285 \$ ( .NOT.left .AND. notran ) ) THEN
286 i1 = 1
287 i2 = k
288 i3 = nb
289 ELSE
290 i1 = ( ( k-1 ) / nb )*nb + 1
291 i2 = 1
292 i3 = -nb
293 END IF
294*
295 IF( left ) THEN
296 ni = n
297 jc = 1
298 ELSE
299 mi = m
300 ic = 1
301 END IF
302*
303 DO 10 i = i1, i2, i3
304 ib = min( nb, k-i+1 )
305*
306* Form the triangular factor of the block reflector
307* H = H(i) H(i+1) . . . H(i+ib-1)
308*
309 CALL zlarft( 'Forward', 'Columnwise', nq-i+1, ib, a( i, i ),
310 \$ lda, tau( i ), work( iwt ), ldt )
311 IF( left ) THEN
312*
313* H or H**H is applied to C(i:m,1:n)
314*
315 mi = m - i + 1
316 ic = i
317 ELSE
318*
319* H or H**H is applied to C(1:m,i:n)
320*
321 ni = n - i + 1
322 jc = i
323 END IF
324*
325* Apply H or H**H
326*
327 CALL zlarfb( side, trans, 'Forward', 'Columnwise', mi, ni,
328 \$ ib, a( i, i ), lda, work( iwt ), ldt,
329 \$ c( ic, jc ), ldc, work, ldwork )
330 10 CONTINUE
331 END IF
332 work( 1 ) = lwkopt
333 RETURN
334*
335* End of ZUNMQR
336*
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition: zlarfb.f:197
subroutine zlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: zlarft.f:163
subroutine zunm2r(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
ZUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition: zunm2r.f:159
Here is the call graph for this function:
Here is the caller graph for this function: