LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zhesv_rook()

subroutine zhesv_rook ( character uplo,
integer n,
integer nrhs,
complex*16, dimension( lda, * ) a,
integer lda,
integer, dimension( * ) ipiv,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( * ) work,
integer lwork,
integer info )

ZHESV_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using the bounded Bunch-Kaufman ("rook") diagonal pivoting method

Download ZHESV_ROOK + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZHESV_ROOK computes the solution to a complex system of linear equations
!>    A * X = B,
!> where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
!> matrices.
!>
!> The bounded Bunch-Kaufman () diagonal pivoting method is used
!> to factor A as
!>    A = U * D * U**T,  if UPLO = 'U', or
!>    A = L * D * L**T,  if UPLO = 'L',
!> where U (or L) is a product of permutation and unit upper (lower)
!> triangular matrices, and D is Hermitian and block diagonal with
!> 1-by-1 and 2-by-2 diagonal blocks.
!>
!> ZHETRF_ROOK is called to compute the factorization of a complex
!> Hermition matrix A using the bounded Bunch-Kaufman () diagonal
!> pivoting method.
!>
!> The factored form of A is then used to solve the system
!> of equations A * X = B by calling ZHETRS_ROOK (uses BLAS 2).
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The number of linear equations, i.e., the order of the
!>          matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
!>          N-by-N upper triangular part of A contains the upper
!>          triangular part of the matrix A, and the strictly lower
!>          triangular part of A is not referenced.  If UPLO = 'L', the
!>          leading N-by-N lower triangular part of A contains the lower
!>          triangular part of the matrix A, and the strictly upper
!>          triangular part of A is not referenced.
!>
!>          On exit, if INFO = 0, the block diagonal matrix D and the
!>          multipliers used to obtain the factor U or L from the
!>          factorization A = U*D*U**H or A = L*D*L**H as computed by
!>          ZHETRF_ROOK.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>          Details of the interchanges and the block structure of D.
!>
!>          If UPLO = 'U':
!>             Only the last KB elements of IPIV are set.
!>
!>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
!>             interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
!>             columns k and -IPIV(k) were interchanged and rows and
!>             columns k-1 and -IPIV(k-1) were inerchaged,
!>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
!>
!>          If UPLO = 'L':
!>             Only the first KB elements of IPIV are set.
!>
!>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
!>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
!>
!>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
!>             columns k and -IPIV(k) were interchanged and rows and
!>             columns k+1 and -IPIV(k+1) were inerchaged,
!>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of WORK.  LWORK >= 1, and for best performance
!>          LWORK >= max(1,N*NB), where NB is the optimal blocksize for
!>          ZHETRF_ROOK.
!>          for LWORK < N, TRS will be done with Level BLAS 2
!>          for LWORK >= N, TRS will be done with Level BLAS 3
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
!>               has been completed, but the block diagonal matrix D is
!>               exactly singular, so the solution could not be computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
!>
!>  November 2013,  Igor Kozachenko,
!>                  Computer Science Division,
!>                  University of California, Berkeley
!>
!>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
!>                  School of Mathematics,
!>                  University of Manchester
!>
!> 

Definition at line 201 of file zhesv_rook.f.

204*
205* -- LAPACK driver routine --
206* -- LAPACK is a software package provided by Univ. of Tennessee, --
207* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
208*
209* .. Scalar Arguments ..
210 CHARACTER UPLO
211 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
212* ..
213* .. Array Arguments ..
214 INTEGER IPIV( * )
215 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
216* ..
217*
218* =====================================================================
219*
220* .. Local Scalars ..
221 LOGICAL LQUERY
222 INTEGER LWKOPT, NB
223* ..
224* .. External Functions ..
225 LOGICAL LSAME
226 INTEGER ILAENV
227 EXTERNAL lsame, ilaenv
228* ..
229* .. External Subroutines ..
231* ..
232* .. Intrinsic Functions ..
233 INTRINSIC max
234* ..
235* .. Executable Statements ..
236*
237* Test the input parameters.
238*
239 info = 0
240 lquery = ( lwork.EQ.-1 )
241 IF( .NOT.lsame( uplo, 'U' ) .AND.
242 $ .NOT.lsame( uplo, 'L' ) ) THEN
243 info = -1
244 ELSE IF( n.LT.0 ) THEN
245 info = -2
246 ELSE IF( nrhs.LT.0 ) THEN
247 info = -3
248 ELSE IF( lda.LT.max( 1, n ) ) THEN
249 info = -5
250 ELSE IF( ldb.LT.max( 1, n ) ) THEN
251 info = -8
252 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
253 info = -10
254 END IF
255*
256 IF( info.EQ.0 ) THEN
257 IF( n.EQ.0 ) THEN
258 lwkopt = 1
259 ELSE
260 nb = ilaenv( 1, 'ZHETRF_ROOK', uplo, n, -1, -1, -1 )
261 lwkopt = n*nb
262 END IF
263 work( 1 ) = lwkopt
264 END IF
265*
266 IF( info.NE.0 ) THEN
267 CALL xerbla( 'ZHESV_ROOK ', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* Compute the factorization A = U*D*U**H or A = L*D*L**H.
274*
275 CALL zhetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info )
276 IF( info.EQ.0 ) THEN
277*
278* Solve the system A*X = B, overwriting B with X.
279*
280* Solve with TRS ( Use Level BLAS 2)
281*
282 CALL zhetrs_rook( uplo, n, nrhs, a, lda, ipiv, b, ldb,
283 $ info )
284*
285 END IF
286*
287 work( 1 ) = lwkopt
288*
289 RETURN
290*
291* End of ZHESV_ROOK
292*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhetrf_rook(uplo, n, a, lda, ipiv, work, lwork, info)
ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
subroutine zhetrs_rook(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: