LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
lapacke_cgeev_work.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native middle-level C interface to LAPACK function cgeev
30 * Author: Intel Corporation
31 *****************************************************************************/
32 
33 #include "lapacke_utils.h"
34 
35 lapack_int LAPACKE_cgeev_work( int matrix_layout, char jobvl, char jobvr,
40  lapack_complex_float* work, lapack_int lwork,
41  float* rwork )
42 {
43  lapack_int info = 0;
44  if( matrix_layout == LAPACK_COL_MAJOR ) {
45  /* Call LAPACK function and adjust info */
46  LAPACK_cgeev( &jobvl, &jobvr, &n, a, &lda, w, vl, &ldvl, vr, &ldvr,
47  work, &lwork, rwork, &info );
48  if( info < 0 ) {
49  info = info - 1;
50  }
51  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
52  lapack_int lda_t = MAX(1,n);
53  lapack_int ldvl_t = MAX(1,n);
54  lapack_int ldvr_t = MAX(1,n);
55  lapack_complex_float* a_t = NULL;
56  lapack_complex_float* vl_t = NULL;
57  lapack_complex_float* vr_t = NULL;
58  /* Check leading dimension(s) */
59  if( lda < n ) {
60  info = -6;
61  LAPACKE_xerbla( "LAPACKE_cgeev_work", info );
62  return info;
63  }
64  if( ldvl < n ) {
65  info = -9;
66  LAPACKE_xerbla( "LAPACKE_cgeev_work", info );
67  return info;
68  }
69  if( ldvr < n ) {
70  info = -11;
71  LAPACKE_xerbla( "LAPACKE_cgeev_work", info );
72  return info;
73  }
74  /* Query optimal working array(s) size if requested */
75  if( lwork == -1 ) {
76  LAPACK_cgeev( &jobvl, &jobvr, &n, a, &lda_t, w, vl, &ldvl_t, vr,
77  &ldvr_t, work, &lwork, rwork, &info );
78  return (info < 0) ? (info - 1) : info;
79  }
80  /* Allocate memory for temporary array(s) */
81  a_t = (lapack_complex_float*)
82  LAPACKE_malloc( sizeof(lapack_complex_float) * lda_t * MAX(1,n) );
83  if( a_t == NULL ) {
85  goto exit_level_0;
86  }
87  if( LAPACKE_lsame( jobvl, 'v' ) ) {
88  vl_t = (lapack_complex_float*)
90  ldvl_t * MAX(1,n) );
91  if( vl_t == NULL ) {
93  goto exit_level_1;
94  }
95  }
96  if( LAPACKE_lsame( jobvr, 'v' ) ) {
97  vr_t = (lapack_complex_float*)
99  ldvr_t * MAX(1,n) );
100  if( vr_t == NULL ) {
102  goto exit_level_2;
103  }
104  }
105  /* Transpose input matrices */
106  LAPACKE_cge_trans( matrix_layout, n, n, a, lda, a_t, lda_t );
107  /* Call LAPACK function and adjust info */
108  LAPACK_cgeev( &jobvl, &jobvr, &n, a_t, &lda_t, w, vl_t, &ldvl_t, vr_t,
109  &ldvr_t, work, &lwork, rwork, &info );
110  if( info < 0 ) {
111  info = info - 1;
112  }
113  /* Transpose output matrices */
114  LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, a_t, lda_t, a, lda );
115  if( LAPACKE_lsame( jobvl, 'v' ) ) {
116  LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, vl_t, ldvl_t, vl, ldvl );
117  }
118  if( LAPACKE_lsame( jobvr, 'v' ) ) {
119  LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, vr_t, ldvr_t, vr, ldvr );
120  }
121  /* Release memory and exit */
122  if( LAPACKE_lsame( jobvr, 'v' ) ) {
123  LAPACKE_free( vr_t );
124  }
125 exit_level_2:
126  if( LAPACKE_lsame( jobvl, 'v' ) ) {
127  LAPACKE_free( vl_t );
128  }
129 exit_level_1:
130  LAPACKE_free( a_t );
131 exit_level_0:
132  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
133  LAPACKE_xerbla( "LAPACKE_cgeev_work", info );
134  }
135  } else {
136  info = -1;
137  LAPACKE_xerbla( "LAPACKE_cgeev_work", info );
138  }
139  return info;
140 }
#define LAPACK_cgeev(...)
Definition: lapack.h:1806
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_float
Definition: lapack.h:45
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_int LAPACKE_cgeev_work(int matrix_layout, char jobvl, char jobvr, lapack_int n, lapack_complex_float *a, lapack_int lda, lapack_complex_float *w, lapack_complex_float *vl, lapack_int ldvl, lapack_complex_float *vr, lapack_int ldvr, lapack_complex_float *work, lapack_int lwork, float *rwork)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
#define MAX(x, y)
Definition: lapacke_utils.h:46
void LAPACKE_cge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_float *in, lapack_int ldin, lapack_complex_float *out, lapack_int ldout)