LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctbt05()

subroutine ctbt05 ( character uplo,
character trans,
character diag,
integer n,
integer kd,
integer nrhs,
complex, dimension( ldab, * ) ab,
integer ldab,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldx, * ) x,
integer ldx,
complex, dimension( ldxact, * ) xact,
integer ldxact,
real, dimension( * ) ferr,
real, dimension( * ) berr,
real, dimension( * ) reslts )

CTBT05

Purpose:
!>
!> CTBT05 tests the error bounds from iterative refinement for the
!> computed solution to a system of equations A*X = B, where A is a
!> triangular band matrix.
!>
!> RESLTS(1) = test of the error bound
!>           = norm(X - XACT) / ( norm(X) * FERR )
!>
!> A large value is returned if this ratio is not less than one.
!>
!> RESLTS(2) = residual from the iterative refinement routine
!>           = the maximum of BERR / ( NZ*EPS + (*) ), where
!>             (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
!>             and NZ = max. number of nonzeros in any row of A, plus 1
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower triangular.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the form of the system of equations.
!>          = 'N':  A * X = B  (No transpose)
!>          = 'T':  A'* X = B  (Transpose)
!>          = 'C':  A'* X = B  (Conjugate transpose = Transpose)
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A is unit triangular.
!>          = 'N':  Non-unit triangular
!>          = 'U':  Unit triangular
!> 
[in]N
!>          N is INTEGER
!>          The number of rows of the matrices X, B, and XACT, and the
!>          order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of super-diagonals of the matrix A if UPLO = 'U',
!>          or the number of sub-diagonals if UPLO = 'L'.  KD >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of columns of the matrices X, B, and XACT.
!>          NRHS >= 0.
!> 
[in]AB
!>          AB is COMPLEX array, dimension (LDAB,N)
!>          The upper or lower triangular band matrix A, stored in the
!>          first kd+1 rows of the array. The j-th column of A is stored
!>          in the j-th column of the array AB as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>          If DIAG = 'U', the diagonal elements of A are not referenced
!>          and are assumed to be 1.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD+1.
!> 
[in]B
!>          B is COMPLEX array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]X
!>          X is COMPLEX array, dimension (LDX,NRHS)
!>          The computed solution vectors.  Each vector is stored as a
!>          column of the matrix X.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]XACT
!>          XACT is COMPLEX array, dimension (LDX,NRHS)
!>          The exact solution vectors.  Each vector is stored as a
!>          column of the matrix XACT.
!> 
[in]LDXACT
!>          LDXACT is INTEGER
!>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
!> 
[in]FERR
!>          FERR is REAL array, dimension (NRHS)
!>          The estimated forward error bounds for each solution vector
!>          X.  If XTRUE is the true solution, FERR bounds the magnitude
!>          of the largest entry in (X - XTRUE) divided by the magnitude
!>          of the largest entry in X.
!> 
[in]BERR
!>          BERR is REAL array, dimension (NRHS)
!>          The componentwise relative backward error of each solution
!>          vector (i.e., the smallest relative change in any entry of A
!>          or B that makes X an exact solution).
!> 
[out]RESLTS
!>          RESLTS is REAL array, dimension (2)
!>          The maximum over the NRHS solution vectors of the ratios:
!>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
!>          RESLTS(2) = BERR / ( NZ*EPS + (*) )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 187 of file ctbt05.f.

189*
190* -- LAPACK test routine --
191* -- LAPACK is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 CHARACTER DIAG, TRANS, UPLO
196 INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS
197* ..
198* .. Array Arguments ..
199 REAL BERR( * ), FERR( * ), RESLTS( * )
200 COMPLEX AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
201 $ XACT( LDXACT, * )
202* ..
203*
204* =====================================================================
205*
206* .. Parameters ..
207 REAL ZERO, ONE
208 parameter( zero = 0.0e+0, one = 1.0e+0 )
209* ..
210* .. Local Scalars ..
211 LOGICAL NOTRAN, UNIT, UPPER
212 INTEGER I, IFU, IMAX, J, K, NZ
213 REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
214 COMPLEX ZDUM
215* ..
216* .. External Functions ..
217 LOGICAL LSAME
218 INTEGER ICAMAX
219 REAL SLAMCH
220 EXTERNAL lsame, icamax, slamch
221* ..
222* .. Intrinsic Functions ..
223 INTRINSIC abs, aimag, max, min, real
224* ..
225* .. Statement Functions ..
226 REAL CABS1
227* ..
228* .. Statement Function definitions ..
229 cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
230* ..
231* .. Executable Statements ..
232*
233* Quick exit if N = 0 or NRHS = 0.
234*
235 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
236 reslts( 1 ) = zero
237 reslts( 2 ) = zero
238 RETURN
239 END IF
240*
241 eps = slamch( 'Epsilon' )
242 unfl = slamch( 'Safe minimum' )
243 ovfl = one / unfl
244 upper = lsame( uplo, 'U' )
245 notran = lsame( trans, 'N' )
246 unit = lsame( diag, 'U' )
247 nz = min( kd, n-1 ) + 1
248*
249* Test 1: Compute the maximum of
250* norm(X - XACT) / ( norm(X) * FERR )
251* over all the vectors X and XACT using the infinity-norm.
252*
253 errbnd = zero
254 DO 30 j = 1, nrhs
255 imax = icamax( n, x( 1, j ), 1 )
256 xnorm = max( cabs1( x( imax, j ) ), unfl )
257 diff = zero
258 DO 10 i = 1, n
259 diff = max( diff, cabs1( x( i, j )-xact( i, j ) ) )
260 10 CONTINUE
261*
262 IF( xnorm.GT.one ) THEN
263 GO TO 20
264 ELSE IF( diff.LE.ovfl*xnorm ) THEN
265 GO TO 20
266 ELSE
267 errbnd = one / eps
268 GO TO 30
269 END IF
270*
271 20 CONTINUE
272 IF( diff / xnorm.LE.ferr( j ) ) THEN
273 errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
274 ELSE
275 errbnd = one / eps
276 END IF
277 30 CONTINUE
278 reslts( 1 ) = errbnd
279*
280* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
281* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
282*
283 ifu = 0
284 IF( unit )
285 $ ifu = 1
286 DO 90 k = 1, nrhs
287 DO 80 i = 1, n
288 tmp = cabs1( b( i, k ) )
289 IF( upper ) THEN
290 IF( .NOT.notran ) THEN
291 DO 40 j = max( i-kd, 1 ), i - ifu
292 tmp = tmp + cabs1( ab( kd+1-i+j, i ) )*
293 $ cabs1( x( j, k ) )
294 40 CONTINUE
295 IF( unit )
296 $ tmp = tmp + cabs1( x( i, k ) )
297 ELSE
298 IF( unit )
299 $ tmp = tmp + cabs1( x( i, k ) )
300 DO 50 j = i + ifu, min( i+kd, n )
301 tmp = tmp + cabs1( ab( kd+1+i-j, j ) )*
302 $ cabs1( x( j, k ) )
303 50 CONTINUE
304 END IF
305 ELSE
306 IF( notran ) THEN
307 DO 60 j = max( i-kd, 1 ), i - ifu
308 tmp = tmp + cabs1( ab( 1+i-j, j ) )*
309 $ cabs1( x( j, k ) )
310 60 CONTINUE
311 IF( unit )
312 $ tmp = tmp + cabs1( x( i, k ) )
313 ELSE
314 IF( unit )
315 $ tmp = tmp + cabs1( x( i, k ) )
316 DO 70 j = i + ifu, min( i+kd, n )
317 tmp = tmp + cabs1( ab( 1+j-i, i ) )*
318 $ cabs1( x( j, k ) )
319 70 CONTINUE
320 END IF
321 END IF
322 IF( i.EQ.1 ) THEN
323 axbi = tmp
324 ELSE
325 axbi = min( axbi, tmp )
326 END IF
327 80 CONTINUE
328 tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
329 IF( k.EQ.1 ) THEN
330 reslts( 2 ) = tmp
331 ELSE
332 reslts( 2 ) = max( reslts( 2 ), tmp )
333 END IF
334 90 CONTINUE
335*
336 RETURN
337*
338* End of CTBT05
339*
integer function icamax(n, cx, incx)
ICAMAX
Definition icamax.f:71
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the caller graph for this function: