LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
serrqrt.f
Go to the documentation of this file.
1*> \brief \b SERRQRT
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE SERRQRT( PATH, NUNIT )
12*
13* .. Scalar Arguments ..
14* CHARACTER*3 PATH
15* INTEGER NUNIT
16* ..
17*
18*
19*> \par Purpose:
20* =============
21*>
22*> \verbatim
23*>
24*> SERRQRT tests the error exits for the REAL routines
25*> that use the QRT decomposition of a general matrix.
26*> \endverbatim
27*
28* Arguments:
29* ==========
30*
31*> \param[in] PATH
32*> \verbatim
33*> PATH is CHARACTER*3
34*> The LAPACK path name for the routines to be tested.
35*> \endverbatim
36*>
37*> \param[in] NUNIT
38*> \verbatim
39*> NUNIT is INTEGER
40*> The unit number for output.
41*> \endverbatim
42*
43* Authors:
44* ========
45*
46*> \author Univ. of Tennessee
47*> \author Univ. of California Berkeley
48*> \author Univ. of Colorado Denver
49*> \author NAG Ltd.
50*
51*> \ingroup single_lin
52*
53* =====================================================================
54 SUBROUTINE serrqrt( PATH, NUNIT )
55 IMPLICIT NONE
56*
57* -- LAPACK test routine --
58* -- LAPACK is a software package provided by Univ. of Tennessee, --
59* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
60*
61* .. Scalar Arguments ..
62 CHARACTER*3 PATH
63 INTEGER NUNIT
64* ..
65*
66* =====================================================================
67*
68* .. Parameters ..
69 INTEGER NMAX
70 parameter( nmax = 2 )
71* ..
72* .. Local Scalars ..
73 INTEGER I, INFO, J
74* ..
75* .. Local Arrays ..
76 REAL A( NMAX, NMAX ), T( NMAX, NMAX ), W( NMAX ),
77 $ C( NMAX, NMAX )
78* ..
79* .. External Subroutines ..
80 EXTERNAL alaesm, chkxer, sgeqrt2, sgeqrt3, sgeqrt,
81 $ sgemqrt
82* ..
83* .. Scalars in Common ..
84 LOGICAL LERR, OK
85 CHARACTER*32 SRNAMT
86 INTEGER INFOT, NOUT
87* ..
88* .. Common blocks ..
89 COMMON / infoc / infot, nout, ok, lerr
90 COMMON / srnamc / srnamt
91* ..
92* .. Intrinsic Functions ..
93 INTRINSIC float
94* ..
95* .. Executable Statements ..
96*
97 nout = nunit
98 WRITE( nout, fmt = * )
99*
100* Set the variables to innocuous values.
101*
102 DO j = 1, nmax
103 DO i = 1, nmax
104 a( i, j ) = 1.0 / float( i+j )
105 c( i, j ) = 1.0 / float( i+j )
106 t( i, j ) = 1.0 / float( i+j )
107 END DO
108 w( j ) = 0.0
109 END DO
110 ok = .true.
111*
112* Error exits for QRT factorization
113*
114* SGEQRT
115*
116 srnamt = 'SGEQRT'
117 infot = 1
118 CALL sgeqrt( -1, 0, 1, a, 1, t, 1, w, info )
119 CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
120 infot = 2
121 CALL sgeqrt( 0, -1, 1, a, 1, t, 1, w, info )
122 CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
123 infot = 3
124 CALL sgeqrt( 0, 0, 0, a, 1, t, 1, w, info )
125 CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
126 infot = 5
127 CALL sgeqrt( 2, 1, 1, a, 1, t, 1, w, info )
128 CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
129 infot = 7
130 CALL sgeqrt( 2, 2, 2, a, 2, t, 1, w, info )
131 CALL chkxer( 'SGEQRT', infot, nout, lerr, ok )
132*
133* SGEQRT2
134*
135 srnamt = 'SGEQRT2'
136 infot = 1
137 CALL sgeqrt2( -1, 0, a, 1, t, 1, info )
138 CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
139 infot = 2
140 CALL sgeqrt2( 0, -1, a, 1, t, 1, info )
141 CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
142 infot = 4
143 CALL sgeqrt2( 2, 1, a, 1, t, 1, info )
144 CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
145 infot = 6
146 CALL sgeqrt2( 2, 2, a, 2, t, 1, info )
147 CALL chkxer( 'SGEQRT2', infot, nout, lerr, ok )
148*
149* SGEQRT3
150*
151 srnamt = 'SGEQRT3'
152 infot = 1
153 CALL sgeqrt3( -1, 0, a, 1, t, 1, info )
154 CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
155 infot = 2
156 CALL sgeqrt3( 0, -1, a, 1, t, 1, info )
157 CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
158 infot = 4
159 CALL sgeqrt3( 2, 1, a, 1, t, 1, info )
160 CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
161 infot = 6
162 CALL sgeqrt3( 2, 2, a, 2, t, 1, info )
163 CALL chkxer( 'SGEQRT3', infot, nout, lerr, ok )
164*
165* SGEMQRT
166*
167 srnamt = 'SGEMQRT'
168 infot = 1
169 CALL sgemqrt( '/', 'N', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
170 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
171 infot = 2
172 CALL sgemqrt( 'L', '/', 0, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
173 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
174 infot = 3
175 CALL sgemqrt( 'L', 'N', -1, 0, 0, 1, a, 1, t, 1, c, 1, w, info )
176 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
177 infot = 4
178 CALL sgemqrt( 'L', 'N', 0, -1, 0, 1, a, 1, t, 1, c, 1, w, info )
179 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
180 infot = 5
181 CALL sgemqrt( 'L', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
182 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
183 infot = 5
184 CALL sgemqrt( 'R', 'N', 0, 0, -1, 1, a, 1, t, 1, c, 1, w, info )
185 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
186 infot = 6
187 CALL sgemqrt( 'L', 'N', 0, 0, 0, 0, a, 1, t, 1, c, 1, w, info )
188 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
189 infot = 8
190 CALL sgemqrt( 'R', 'N', 1, 2, 1, 1, a, 1, t, 1, c, 1, w, info )
191 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
192 infot = 8
193 CALL sgemqrt( 'L', 'N', 2, 1, 1, 1, a, 1, t, 1, c, 1, w, info )
194 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
195 infot = 10
196 CALL sgemqrt( 'R', 'N', 1, 1, 1, 1, a, 1, t, 0, c, 1, w, info )
197 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
198 infot = 12
199 CALL sgemqrt( 'L', 'N', 1, 1, 1, 1, a, 1, t, 1, c, 0, w, info )
200 CALL chkxer( 'SGEMQRT', infot, nout, lerr, ok )
201*
202* Print a summary line.
203*
204 CALL alaesm( path, ok, nout )
205*
206 RETURN
207*
208* End of SERRQRT
209*
210 END
subroutine alaesm(path, ok, nout)
ALAESM
Definition alaesm.f:63
subroutine chkxer(srnamt, infot, nout, lerr, ok)
Definition cblat2.f:3224
subroutine sgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
SGEMQRT
Definition sgemqrt.f:168
subroutine sgeqrt2(m, n, a, lda, t, ldt, info)
SGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY represen...
Definition sgeqrt2.f:127
recursive subroutine sgeqrt3(m, n, a, lda, t, ldt, info)
SGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition sgeqrt3.f:132
subroutine sgeqrt(m, n, nb, a, lda, t, ldt, work, info)
SGEQRT
Definition sgeqrt.f:141
subroutine serrqrt(path, nunit)
SERRQRT
Definition serrqrt.f:55