LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zsymm()

subroutine zsymm ( character side,
character uplo,
integer m,
integer n,
complex*16 alpha,
complex*16, dimension(lda,*) a,
integer lda,
complex*16, dimension(ldb,*) b,
integer ldb,
complex*16 beta,
complex*16, dimension(ldc,*) c,
integer ldc )

ZSYMM

Purpose:
!>
!> ZSYMM  performs one of the matrix-matrix operations
!>
!>    C := alpha*A*B + beta*C,
!>
!> or
!>
!>    C := alpha*B*A + beta*C,
!>
!> where  alpha and beta are scalars, A is a symmetric matrix and  B and
!> C are m by n matrices.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>           On entry,  SIDE  specifies whether  the  symmetric matrix  A
!>           appears on the  left or right  in the  operation as follows:
!>
!>              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
!>
!>              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
!>           triangular  part  of  the  symmetric  matrix   A  is  to  be
!>           referenced as follows:
!>
!>              UPLO = 'U' or 'u'   Only the upper triangular part of the
!>                                  symmetric matrix is to be referenced.
!>
!>              UPLO = 'L' or 'l'   Only the lower triangular part of the
!>                                  symmetric matrix is to be referenced.
!> 
[in]M
!>          M is INTEGER
!>           On entry,  M  specifies the number of rows of the matrix  C.
!>           M  must be at least zero.
!> 
[in]N
!>          N is INTEGER
!>           On entry, N specifies the number of columns of the matrix C.
!>           N  must be at least zero.
!> 
[in]ALPHA
!>          ALPHA is COMPLEX*16
!>           On entry, ALPHA specifies the scalar alpha.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is
!>           m  when  SIDE = 'L' or 'l'  and is n  otherwise.
!>           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading m by m upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  m by m  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!>           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
!>           the array  A  must contain the  symmetric matrix,  such that
!>           when  UPLO = 'U' or 'u', the leading n by n upper triangular
!>           part of the array  A  must contain the upper triangular part
!>           of the  symmetric matrix and the  strictly  lower triangular
!>           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
!>           the leading  n by n  lower triangular part  of the  array  A
!>           must  contain  the  lower triangular part  of the  symmetric
!>           matrix and the  strictly upper triangular part of  A  is not
!>           referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>           On entry, LDA specifies the first dimension of A as declared
!>           in the  calling (sub) program. When  SIDE = 'L' or 'l'  then
!>           LDA must be at least  max( 1, m ), otherwise  LDA must be at
!>           least max( 1, n ).
!> 
[in]B
!>          B is COMPLEX*16 array, dimension ( LDB, N )
!>           Before entry, the leading  m by n part of the array  B  must
!>           contain the matrix B.
!> 
[in]LDB
!>          LDB is INTEGER
!>           On entry, LDB specifies the first dimension of B as declared
!>           in  the  calling  (sub)  program.   LDB  must  be  at  least
!>           max( 1, m ).
!> 
[in]BETA
!>          BETA is COMPLEX*16
!>           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
!>           supplied as zero then C need not be set on input.
!> 
[in,out]C
!>          C is COMPLEX*16 array, dimension ( LDC, N )
!>           Before entry, the leading  m by n  part of the array  C must
!>           contain the matrix  C,  except when  beta  is zero, in which
!>           case C need not be set on entry.
!>           On exit, the array  C  is overwritten by the  m by n updated
!>           matrix.
!> 
[in]LDC
!>          LDC is INTEGER
!>           On entry, LDC specifies the first dimension of C as declared
!>           in  the  calling  (sub)  program.   LDC  must  be  at  least
!>           max( 1, m ).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  Level 3 Blas routine.
!>
!>  -- Written on 8-February-1989.
!>     Jack Dongarra, Argonne National Laboratory.
!>     Iain Duff, AERE Harwell.
!>     Jeremy Du Croz, Numerical Algorithms Group Ltd.
!>     Sven Hammarling, Numerical Algorithms Group Ltd.
!> 

Definition at line 188 of file zsymm.f.

189*
190* -- Reference BLAS level3 routine --
191* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 COMPLEX*16 ALPHA,BETA
196 INTEGER LDA,LDB,LDC,M,N
197 CHARACTER SIDE,UPLO
198* ..
199* .. Array Arguments ..
200 COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
201* ..
202*
203* =====================================================================
204*
205* .. External Functions ..
206 LOGICAL LSAME
207 EXTERNAL lsame
208* ..
209* .. External Subroutines ..
210 EXTERNAL xerbla
211* ..
212* .. Intrinsic Functions ..
213 INTRINSIC max
214* ..
215* .. Local Scalars ..
216 COMPLEX*16 TEMP1,TEMP2
217 INTEGER I,INFO,J,K,NROWA
218 LOGICAL UPPER
219* ..
220* .. Parameters ..
221 COMPLEX*16 ONE
222 parameter(one= (1.0d+0,0.0d+0))
223 COMPLEX*16 ZERO
224 parameter(zero= (0.0d+0,0.0d+0))
225* ..
226*
227* Set NROWA as the number of rows of A.
228*
229 IF (lsame(side,'L')) THEN
230 nrowa = m
231 ELSE
232 nrowa = n
233 END IF
234 upper = lsame(uplo,'U')
235*
236* Test the input parameters.
237*
238 info = 0
239 IF ((.NOT.lsame(side,'L')) .AND.
240 + (.NOT.lsame(side,'R'))) THEN
241 info = 1
242 ELSE IF ((.NOT.upper) .AND.
243 + (.NOT.lsame(uplo,'L'))) THEN
244 info = 2
245 ELSE IF (m.LT.0) THEN
246 info = 3
247 ELSE IF (n.LT.0) THEN
248 info = 4
249 ELSE IF (lda.LT.max(1,nrowa)) THEN
250 info = 7
251 ELSE IF (ldb.LT.max(1,m)) THEN
252 info = 9
253 ELSE IF (ldc.LT.max(1,m)) THEN
254 info = 12
255 END IF
256 IF (info.NE.0) THEN
257 CALL xerbla('ZSYMM ',info)
258 RETURN
259 END IF
260*
261* Quick return if possible.
262*
263 IF ((m.EQ.0) .OR. (n.EQ.0) .OR.
264 + ((alpha.EQ.zero).AND. (beta.EQ.one))) RETURN
265*
266* And when alpha.eq.zero.
267*
268 IF (alpha.EQ.zero) THEN
269 IF (beta.EQ.zero) THEN
270 DO 20 j = 1,n
271 DO 10 i = 1,m
272 c(i,j) = zero
273 10 CONTINUE
274 20 CONTINUE
275 ELSE
276 DO 40 j = 1,n
277 DO 30 i = 1,m
278 c(i,j) = beta*c(i,j)
279 30 CONTINUE
280 40 CONTINUE
281 END IF
282 RETURN
283 END IF
284*
285* Start the operations.
286*
287 IF (lsame(side,'L')) THEN
288*
289* Form C := alpha*A*B + beta*C.
290*
291 IF (upper) THEN
292 DO 70 j = 1,n
293 DO 60 i = 1,m
294 temp1 = alpha*b(i,j)
295 temp2 = zero
296 DO 50 k = 1,i - 1
297 c(k,j) = c(k,j) + temp1*a(k,i)
298 temp2 = temp2 + b(k,j)*a(k,i)
299 50 CONTINUE
300 IF (beta.EQ.zero) THEN
301 c(i,j) = temp1*a(i,i) + alpha*temp2
302 ELSE
303 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
304 + alpha*temp2
305 END IF
306 60 CONTINUE
307 70 CONTINUE
308 ELSE
309 DO 100 j = 1,n
310 DO 90 i = m,1,-1
311 temp1 = alpha*b(i,j)
312 temp2 = zero
313 DO 80 k = i + 1,m
314 c(k,j) = c(k,j) + temp1*a(k,i)
315 temp2 = temp2 + b(k,j)*a(k,i)
316 80 CONTINUE
317 IF (beta.EQ.zero) THEN
318 c(i,j) = temp1*a(i,i) + alpha*temp2
319 ELSE
320 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
321 + alpha*temp2
322 END IF
323 90 CONTINUE
324 100 CONTINUE
325 END IF
326 ELSE
327*
328* Form C := alpha*B*A + beta*C.
329*
330 DO 170 j = 1,n
331 temp1 = alpha*a(j,j)
332 IF (beta.EQ.zero) THEN
333 DO 110 i = 1,m
334 c(i,j) = temp1*b(i,j)
335 110 CONTINUE
336 ELSE
337 DO 120 i = 1,m
338 c(i,j) = beta*c(i,j) + temp1*b(i,j)
339 120 CONTINUE
340 END IF
341 DO 140 k = 1,j - 1
342 IF (upper) THEN
343 temp1 = alpha*a(k,j)
344 ELSE
345 temp1 = alpha*a(j,k)
346 END IF
347 DO 130 i = 1,m
348 c(i,j) = c(i,j) + temp1*b(i,k)
349 130 CONTINUE
350 140 CONTINUE
351 DO 160 k = j + 1,n
352 IF (upper) THEN
353 temp1 = alpha*a(j,k)
354 ELSE
355 temp1 = alpha*a(k,j)
356 END IF
357 DO 150 i = 1,m
358 c(i,j) = c(i,j) + temp1*b(i,k)
359 150 CONTINUE
360 160 CONTINUE
361 170 CONTINUE
362 END IF
363*
364 RETURN
365*
366* End of ZSYMM
367*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: