LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ ssymm()

subroutine ssymm ( character side,
character uplo,
integer m,
integer n,
real alpha,
real, dimension(lda,*) a,
integer lda,
real, dimension(ldb,*) b,
integer ldb,
real beta,
real, dimension(ldc,*) c,
integer ldc )

SSYMM

Purpose:
!> !> SSYMM performs one of the matrix-matrix operations !> !> C := alpha*A*B + beta*C, !> !> or !> !> C := alpha*B*A + beta*C, !> !> where alpha and beta are scalars, A is a symmetric matrix and B and !> C are m by n matrices. !>
Parameters
[in]SIDE
!> SIDE is CHARACTER*1 !> On entry, SIDE specifies whether the symmetric matrix A !> appears on the left or right in the operation as follows: !> !> SIDE = 'L' or 'l' C := alpha*A*B + beta*C, !> !> SIDE = 'R' or 'r' C := alpha*B*A + beta*C, !>
[in]UPLO
!> UPLO is CHARACTER*1 !> On entry, UPLO specifies whether the upper or lower !> triangular part of the symmetric matrix A is to be !> referenced as follows: !> !> UPLO = 'U' or 'u' Only the upper triangular part of the !> symmetric matrix is to be referenced. !> !> UPLO = 'L' or 'l' Only the lower triangular part of the !> symmetric matrix is to be referenced. !>
[in]M
!> M is INTEGER !> On entry, M specifies the number of rows of the matrix C. !> M must be at least zero. !>
[in]N
!> N is INTEGER !> On entry, N specifies the number of columns of the matrix C. !> N must be at least zero. !>
[in]ALPHA
!> ALPHA is REAL !> On entry, ALPHA specifies the scalar alpha. !>
[in]A
!> A is REAL array, dimension ( LDA, ka ), where ka is !> m when SIDE = 'L' or 'l' and is n otherwise. !> Before entry with SIDE = 'L' or 'l', the m by m part of !> the array A must contain the symmetric matrix, such that !> when UPLO = 'U' or 'u', the leading m by m upper triangular !> part of the array A must contain the upper triangular part !> of the symmetric matrix and the strictly lower triangular !> part of A is not referenced, and when UPLO = 'L' or 'l', !> the leading m by m lower triangular part of the array A !> must contain the lower triangular part of the symmetric !> matrix and the strictly upper triangular part of A is not !> referenced. !> Before entry with SIDE = 'R' or 'r', the n by n part of !> the array A must contain the symmetric matrix, such that !> when UPLO = 'U' or 'u', the leading n by n upper triangular !> part of the array A must contain the upper triangular part !> of the symmetric matrix and the strictly lower triangular !> part of A is not referenced, and when UPLO = 'L' or 'l', !> the leading n by n lower triangular part of the array A !> must contain the lower triangular part of the symmetric !> matrix and the strictly upper triangular part of A is not !> referenced. !>
[in]LDA
!> LDA is INTEGER !> On entry, LDA specifies the first dimension of A as declared !> in the calling (sub) program. When SIDE = 'L' or 'l' then !> LDA must be at least max( 1, m ), otherwise LDA must be at !> least max( 1, n ). !>
[in]B
!> B is REAL array, dimension ( LDB, N ) !> Before entry, the leading m by n part of the array B must !> contain the matrix B. !>
[in]LDB
!> LDB is INTEGER !> On entry, LDB specifies the first dimension of B as declared !> in the calling (sub) program. LDB must be at least !> max( 1, m ). !>
[in]BETA
!> BETA is REAL !> On entry, BETA specifies the scalar beta. When BETA is !> supplied as zero then C need not be set on input. !>
[in,out]C
!> C is REAL array, dimension ( LDC, N ) !> Before entry, the leading m by n part of the array C must !> contain the matrix C, except when beta is zero, in which !> case C need not be set on entry. !> On exit, the array C is overwritten by the m by n updated !> matrix. !>
[in]LDC
!> LDC is INTEGER !> On entry, LDC specifies the first dimension of C as declared !> in the calling (sub) program. LDC must be at least !> max( 1, m ). !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!> !> Level 3 Blas routine. !> !> -- Written on 8-February-1989. !> Jack Dongarra, Argonne National Laboratory. !> Iain Duff, AERE Harwell. !> Jeremy Du Croz, Numerical Algorithms Group Ltd. !> Sven Hammarling, Numerical Algorithms Group Ltd. !>

Definition at line 188 of file ssymm.f.

189*
190* -- Reference BLAS level3 routine --
191* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
192* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193*
194* .. Scalar Arguments ..
195 REAL ALPHA,BETA
196 INTEGER LDA,LDB,LDC,M,N
197 CHARACTER SIDE,UPLO
198* ..
199* .. Array Arguments ..
200 REAL A(LDA,*),B(LDB,*),C(LDC,*)
201* ..
202*
203* =====================================================================
204*
205* .. External Functions ..
206 LOGICAL LSAME
207 EXTERNAL lsame
208* ..
209* .. External Subroutines ..
210 EXTERNAL xerbla
211* ..
212* .. Intrinsic Functions ..
213 INTRINSIC max
214* ..
215* .. Local Scalars ..
216 REAL TEMP1,TEMP2
217 INTEGER I,INFO,J,K,NROWA
218 LOGICAL UPPER
219* ..
220* .. Parameters ..
221 REAL ONE,ZERO
222 parameter(one=1.0e+0,zero=0.0e+0)
223* ..
224*
225* Set NROWA as the number of rows of A.
226*
227 IF (lsame(side,'L')) THEN
228 nrowa = m
229 ELSE
230 nrowa = n
231 END IF
232 upper = lsame(uplo,'U')
233*
234* Test the input parameters.
235*
236 info = 0
237 IF ((.NOT.lsame(side,'L')) .AND.
238 + (.NOT.lsame(side,'R'))) THEN
239 info = 1
240 ELSE IF ((.NOT.upper) .AND.
241 + (.NOT.lsame(uplo,'L'))) THEN
242 info = 2
243 ELSE IF (m.LT.0) THEN
244 info = 3
245 ELSE IF (n.LT.0) THEN
246 info = 4
247 ELSE IF (lda.LT.max(1,nrowa)) THEN
248 info = 7
249 ELSE IF (ldb.LT.max(1,m)) THEN
250 info = 9
251 ELSE IF (ldc.LT.max(1,m)) THEN
252 info = 12
253 END IF
254 IF (info.NE.0) THEN
255 CALL xerbla('SSYMM ',info)
256 RETURN
257 END IF
258*
259* Quick return if possible.
260*
261 IF ((m.EQ.0) .OR. (n.EQ.0) .OR.
262 + ((alpha.EQ.zero).AND. (beta.EQ.one))) RETURN
263*
264* And when alpha.eq.zero.
265*
266 IF (alpha.EQ.zero) THEN
267 IF (beta.EQ.zero) THEN
268 DO 20 j = 1,n
269 DO 10 i = 1,m
270 c(i,j) = zero
271 10 CONTINUE
272 20 CONTINUE
273 ELSE
274 DO 40 j = 1,n
275 DO 30 i = 1,m
276 c(i,j) = beta*c(i,j)
277 30 CONTINUE
278 40 CONTINUE
279 END IF
280 RETURN
281 END IF
282*
283* Start the operations.
284*
285 IF (lsame(side,'L')) THEN
286*
287* Form C := alpha*A*B + beta*C.
288*
289 IF (upper) THEN
290 DO 70 j = 1,n
291 DO 60 i = 1,m
292 temp1 = alpha*b(i,j)
293 temp2 = zero
294 DO 50 k = 1,i - 1
295 c(k,j) = c(k,j) + temp1*a(k,i)
296 temp2 = temp2 + b(k,j)*a(k,i)
297 50 CONTINUE
298 IF (beta.EQ.zero) THEN
299 c(i,j) = temp1*a(i,i) + alpha*temp2
300 ELSE
301 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
302 + alpha*temp2
303 END IF
304 60 CONTINUE
305 70 CONTINUE
306 ELSE
307 DO 100 j = 1,n
308 DO 90 i = m,1,-1
309 temp1 = alpha*b(i,j)
310 temp2 = zero
311 DO 80 k = i + 1,m
312 c(k,j) = c(k,j) + temp1*a(k,i)
313 temp2 = temp2 + b(k,j)*a(k,i)
314 80 CONTINUE
315 IF (beta.EQ.zero) THEN
316 c(i,j) = temp1*a(i,i) + alpha*temp2
317 ELSE
318 c(i,j) = beta*c(i,j) + temp1*a(i,i) +
319 + alpha*temp2
320 END IF
321 90 CONTINUE
322 100 CONTINUE
323 END IF
324 ELSE
325*
326* Form C := alpha*B*A + beta*C.
327*
328 DO 170 j = 1,n
329 temp1 = alpha*a(j,j)
330 IF (beta.EQ.zero) THEN
331 DO 110 i = 1,m
332 c(i,j) = temp1*b(i,j)
333 110 CONTINUE
334 ELSE
335 DO 120 i = 1,m
336 c(i,j) = beta*c(i,j) + temp1*b(i,j)
337 120 CONTINUE
338 END IF
339 DO 140 k = 1,j - 1
340 IF (upper) THEN
341 temp1 = alpha*a(k,j)
342 ELSE
343 temp1 = alpha*a(j,k)
344 END IF
345 DO 130 i = 1,m
346 c(i,j) = c(i,j) + temp1*b(i,k)
347 130 CONTINUE
348 140 CONTINUE
349 DO 160 k = j + 1,n
350 IF (upper) THEN
351 temp1 = alpha*a(j,k)
352 ELSE
353 temp1 = alpha*a(k,j)
354 END IF
355 DO 150 i = 1,m
356 c(i,j) = c(i,j) + temp1*b(i,k)
357 150 CONTINUE
358 160 CONTINUE
359 170 CONTINUE
360 END IF
361*
362 RETURN
363*
364* End of SSYMM
365*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: