LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine zptrfs ( character UPLO, integer N, integer NRHS, double precision, dimension( * ) D, complex*16, dimension( * ) E, double precision, dimension( * ) DF, complex*16, dimension( * ) EF, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldx, * ) X, integer LDX, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO )

ZPTRFS

Purpose:
``` ZPTRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian positive definite
and tridiagonal, and provides error bounds and backward error
estimates for the solution.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the superdiagonal or the subdiagonal of the tridiagonal matrix A is stored and the form of the factorization: = 'U': E is the superdiagonal of A, and A = U**H*D*U; = 'L': E is the subdiagonal of A, and A = L*D*L**H. (The two forms are equivalent if A is real.)``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.``` [in] D ``` D is DOUBLE PRECISION array, dimension (N) The n real diagonal elements of the tridiagonal matrix A.``` [in] E ``` E is COMPLEX*16 array, dimension (N-1) The (n-1) off-diagonal elements of the tridiagonal matrix A (see UPLO).``` [in] DF ``` DF is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization computed by ZPTTRF.``` [in] EF ``` EF is COMPLEX*16 array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization computed by ZPTTRF (see UPLO).``` [in] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) The right hand side matrix B.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [in,out] X ``` X is COMPLEX*16 array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by ZPTTRS. On exit, the improved solution matrix X.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [out] FERR ``` FERR is DOUBLE PRECISION array, dimension (NRHS) The forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j).``` [out] BERR ``` BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).``` [out] WORK ` WORK is COMPLEX*16 array, dimension (N)` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (N)` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```
Internal Parameters:
`  ITMAX is the maximum number of steps of iterative refinement.`
Date
September 2012

Definition at line 185 of file zptrfs.f.

185 *
186 * -- LAPACK computational routine (version 3.4.2) --
187 * -- LAPACK is a software package provided by Univ. of Tennessee, --
188 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
189 * September 2012
190 *
191 * .. Scalar Arguments ..
192  CHARACTER uplo
193  INTEGER info, ldb, ldx, n, nrhs
194 * ..
195 * .. Array Arguments ..
196  DOUBLE PRECISION berr( * ), d( * ), df( * ), ferr( * ),
197  \$ rwork( * )
198  COMPLEX*16 b( ldb, * ), e( * ), ef( * ), work( * ),
199  \$ x( ldx, * )
200 * ..
201 *
202 * =====================================================================
203 *
204 * .. Parameters ..
205  INTEGER itmax
206  parameter ( itmax = 5 )
207  DOUBLE PRECISION zero
208  parameter ( zero = 0.0d+0 )
209  DOUBLE PRECISION one
210  parameter ( one = 1.0d+0 )
211  DOUBLE PRECISION two
212  parameter ( two = 2.0d+0 )
213  DOUBLE PRECISION three
214  parameter ( three = 3.0d+0 )
215 * ..
216 * .. Local Scalars ..
217  LOGICAL upper
218  INTEGER count, i, ix, j, nz
219  DOUBLE PRECISION eps, lstres, s, safe1, safe2, safmin
220  COMPLEX*16 bi, cx, dx, ex, zdum
221 * ..
222 * .. External Functions ..
223  LOGICAL lsame
224  INTEGER idamax
225  DOUBLE PRECISION dlamch
226  EXTERNAL lsame, idamax, dlamch
227 * ..
228 * .. External Subroutines ..
229  EXTERNAL xerbla, zaxpy, zpttrs
230 * ..
231 * .. Intrinsic Functions ..
232  INTRINSIC abs, dble, dcmplx, dconjg, dimag, max
233 * ..
234 * .. Statement Functions ..
235  DOUBLE PRECISION cabs1
236 * ..
237 * .. Statement Function definitions ..
238  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
239 * ..
240 * .. Executable Statements ..
241 *
242 * Test the input parameters.
243 *
244  info = 0
245  upper = lsame( uplo, 'U' )
246  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
247  info = -1
248  ELSE IF( n.LT.0 ) THEN
249  info = -2
250  ELSE IF( nrhs.LT.0 ) THEN
251  info = -3
252  ELSE IF( ldb.LT.max( 1, n ) ) THEN
253  info = -9
254  ELSE IF( ldx.LT.max( 1, n ) ) THEN
255  info = -11
256  END IF
257  IF( info.NE.0 ) THEN
258  CALL xerbla( 'ZPTRFS', -info )
259  RETURN
260  END IF
261 *
262 * Quick return if possible
263 *
264  IF( n.EQ.0 .OR. nrhs.EQ.0 ) THEN
265  DO 10 j = 1, nrhs
266  ferr( j ) = zero
267  berr( j ) = zero
268  10 CONTINUE
269  RETURN
270  END IF
271 *
272 * NZ = maximum number of nonzero elements in each row of A, plus 1
273 *
274  nz = 4
275  eps = dlamch( 'Epsilon' )
276  safmin = dlamch( 'Safe minimum' )
277  safe1 = nz*safmin
278  safe2 = safe1 / eps
279 *
280 * Do for each right hand side
281 *
282  DO 100 j = 1, nrhs
283 *
284  count = 1
285  lstres = three
286  20 CONTINUE
287 *
288 * Loop until stopping criterion is satisfied.
289 *
290 * Compute residual R = B - A * X. Also compute
291 * abs(A)*abs(x) + abs(b) for use in the backward error bound.
292 *
293  IF( upper ) THEN
294  IF( n.EQ.1 ) THEN
295  bi = b( 1, j )
296  dx = d( 1 )*x( 1, j )
297  work( 1 ) = bi - dx
298  rwork( 1 ) = cabs1( bi ) + cabs1( dx )
299  ELSE
300  bi = b( 1, j )
301  dx = d( 1 )*x( 1, j )
302  ex = e( 1 )*x( 2, j )
303  work( 1 ) = bi - dx - ex
304  rwork( 1 ) = cabs1( bi ) + cabs1( dx ) +
305  \$ cabs1( e( 1 ) )*cabs1( x( 2, j ) )
306  DO 30 i = 2, n - 1
307  bi = b( i, j )
308  cx = dconjg( e( i-1 ) )*x( i-1, j )
309  dx = d( i )*x( i, j )
310  ex = e( i )*x( i+1, j )
311  work( i ) = bi - cx - dx - ex
312  rwork( i ) = cabs1( bi ) +
313  \$ cabs1( e( i-1 ) )*cabs1( x( i-1, j ) ) +
314  \$ cabs1( dx ) + cabs1( e( i ) )*
315  \$ cabs1( x( i+1, j ) )
316  30 CONTINUE
317  bi = b( n, j )
318  cx = dconjg( e( n-1 ) )*x( n-1, j )
319  dx = d( n )*x( n, j )
320  work( n ) = bi - cx - dx
321  rwork( n ) = cabs1( bi ) + cabs1( e( n-1 ) )*
322  \$ cabs1( x( n-1, j ) ) + cabs1( dx )
323  END IF
324  ELSE
325  IF( n.EQ.1 ) THEN
326  bi = b( 1, j )
327  dx = d( 1 )*x( 1, j )
328  work( 1 ) = bi - dx
329  rwork( 1 ) = cabs1( bi ) + cabs1( dx )
330  ELSE
331  bi = b( 1, j )
332  dx = d( 1 )*x( 1, j )
333  ex = dconjg( e( 1 ) )*x( 2, j )
334  work( 1 ) = bi - dx - ex
335  rwork( 1 ) = cabs1( bi ) + cabs1( dx ) +
336  \$ cabs1( e( 1 ) )*cabs1( x( 2, j ) )
337  DO 40 i = 2, n - 1
338  bi = b( i, j )
339  cx = e( i-1 )*x( i-1, j )
340  dx = d( i )*x( i, j )
341  ex = dconjg( e( i ) )*x( i+1, j )
342  work( i ) = bi - cx - dx - ex
343  rwork( i ) = cabs1( bi ) +
344  \$ cabs1( e( i-1 ) )*cabs1( x( i-1, j ) ) +
345  \$ cabs1( dx ) + cabs1( e( i ) )*
346  \$ cabs1( x( i+1, j ) )
347  40 CONTINUE
348  bi = b( n, j )
349  cx = e( n-1 )*x( n-1, j )
350  dx = d( n )*x( n, j )
351  work( n ) = bi - cx - dx
352  rwork( n ) = cabs1( bi ) + cabs1( e( n-1 ) )*
353  \$ cabs1( x( n-1, j ) ) + cabs1( dx )
354  END IF
355  END IF
356 *
357 * Compute componentwise relative backward error from formula
358 *
359 * max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
360 *
361 * where abs(Z) is the componentwise absolute value of the matrix
362 * or vector Z. If the i-th component of the denominator is less
363 * than SAFE2, then SAFE1 is added to the i-th components of the
364 * numerator and denominator before dividing.
365 *
366  s = zero
367  DO 50 i = 1, n
368  IF( rwork( i ).GT.safe2 ) THEN
369  s = max( s, cabs1( work( i ) ) / rwork( i ) )
370  ELSE
371  s = max( s, ( cabs1( work( i ) )+safe1 ) /
372  \$ ( rwork( i )+safe1 ) )
373  END IF
374  50 CONTINUE
375  berr( j ) = s
376 *
377 * Test stopping criterion. Continue iterating if
378 * 1) The residual BERR(J) is larger than machine epsilon, and
379 * 2) BERR(J) decreased by at least a factor of 2 during the
380 * last iteration, and
381 * 3) At most ITMAX iterations tried.
382 *
383  IF( berr( j ).GT.eps .AND. two*berr( j ).LE.lstres .AND.
384  \$ count.LE.itmax ) THEN
385 *
386 * Update solution and try again.
387 *
388  CALL zpttrs( uplo, n, 1, df, ef, work, n, info )
389  CALL zaxpy( n, dcmplx( one ), work, 1, x( 1, j ), 1 )
390  lstres = berr( j )
391  count = count + 1
392  GO TO 20
393  END IF
394 *
395 * Bound error from formula
396 *
397 * norm(X - XTRUE) / norm(X) .le. FERR =
398 * norm( abs(inv(A))*
399 * ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
400 *
401 * where
402 * norm(Z) is the magnitude of the largest component of Z
403 * inv(A) is the inverse of A
404 * abs(Z) is the componentwise absolute value of the matrix or
405 * vector Z
406 * NZ is the maximum number of nonzeros in any row of A, plus 1
407 * EPS is machine epsilon
408 *
409 * The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
410 * is incremented by SAFE1 if the i-th component of
411 * abs(A)*abs(X) + abs(B) is less than SAFE2.
412 *
413  DO 60 i = 1, n
414  IF( rwork( i ).GT.safe2 ) THEN
415  rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i )
416  ELSE
417  rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +
418  \$ safe1
419  END IF
420  60 CONTINUE
421  ix = idamax( n, rwork, 1 )
422  ferr( j ) = rwork( ix )
423 *
424 * Estimate the norm of inv(A).
425 *
426 * Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
427 *
428 * m(i,j) = abs(A(i,j)), i = j,
429 * m(i,j) = -abs(A(i,j)), i .ne. j,
430 *
431 * and e = [ 1, 1, ..., 1 ]**T. Note M(A) = M(L)*D*M(L)**H.
432 *
433 * Solve M(L) * x = e.
434 *
435  rwork( 1 ) = one
436  DO 70 i = 2, n
437  rwork( i ) = one + rwork( i-1 )*abs( ef( i-1 ) )
438  70 CONTINUE
439 *
440 * Solve D * M(L)**H * x = b.
441 *
442  rwork( n ) = rwork( n ) / df( n )
443  DO 80 i = n - 1, 1, -1
444  rwork( i ) = rwork( i ) / df( i ) +
445  \$ rwork( i+1 )*abs( ef( i ) )
446  80 CONTINUE
447 *
448 * Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
449 *
450  ix = idamax( n, rwork, 1 )
451  ferr( j ) = ferr( j )*abs( rwork( ix ) )
452 *
453 * Normalize error.
454 *
455  lstres = zero
456  DO 90 i = 1, n
457  lstres = max( lstres, abs( x( i, j ) ) )
458  90 CONTINUE
459  IF( lstres.NE.zero )
460  \$ ferr( j ) = ferr( j ) / lstres
461 *
462  100 CONTINUE
463 *
464  RETURN
465 *
466 * End of ZPTRFS
467 *
subroutine zpttrs(UPLO, N, NRHS, D, E, B, LDB, INFO)
ZPTTRS
Definition: zpttrs.f:123
integer function idamax(N, DX, INCX)
IDAMAX
Definition: idamax.f:53
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine zaxpy(N, ZA, ZX, INCX, ZY, INCY)
ZAXPY
Definition: zaxpy.f:53

Here is the call graph for this function:

Here is the caller graph for this function: