LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
lapack_int LAPACKE_zhgeqz_work ( int  matrix_layout,
char  job,
char  compq,
char  compz,
lapack_int  n,
lapack_int  ilo,
lapack_int  ihi,
lapack_complex_double h,
lapack_int  ldh,
lapack_complex_double t,
lapack_int  ldt,
lapack_complex_double alpha,
lapack_complex_double beta,
lapack_complex_double q,
lapack_int  ldq,
lapack_complex_double z,
lapack_int  ldz,
lapack_complex_double work,
lapack_int  lwork,
double *  rwork 
)

Definition at line 36 of file lapacke_zhgeqz_work.c.

46 {
47  lapack_int info = 0;
48  if( matrix_layout == LAPACK_COL_MAJOR ) {
49  /* Call LAPACK function and adjust info */
50  LAPACK_zhgeqz( &job, &compq, &compz, &n, &ilo, &ihi, h, &ldh, t, &ldt,
51  alpha, beta, q, &ldq, z, &ldz, work, &lwork, rwork,
52  &info );
53  if( info < 0 ) {
54  info = info - 1;
55  }
56  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
57  lapack_int ldh_t = MAX(1,n);
58  lapack_int ldq_t = MAX(1,n);
59  lapack_int ldt_t = MAX(1,n);
60  lapack_int ldz_t = MAX(1,n);
61  lapack_complex_double* h_t = NULL;
62  lapack_complex_double* t_t = NULL;
63  lapack_complex_double* q_t = NULL;
64  lapack_complex_double* z_t = NULL;
65  /* Check leading dimension(s) */
66  if( ldh < n ) {
67  info = -9;
68  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
69  return info;
70  }
71  if( ldq < n ) {
72  info = -15;
73  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
74  return info;
75  }
76  if( ldt < n ) {
77  info = -11;
78  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
79  return info;
80  }
81  if( ldz < n ) {
82  info = -17;
83  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
84  return info;
85  }
86  /* Query optimal working array(s) size if requested */
87  if( lwork == -1 ) {
88  LAPACK_zhgeqz( &job, &compq, &compz, &n, &ilo, &ihi, h, &ldh_t, t,
89  &ldt_t, alpha, beta, q, &ldq_t, z, &ldz_t, work,
90  &lwork, rwork, &info );
91  return (info < 0) ? (info - 1) : info;
92  }
93  /* Allocate memory for temporary array(s) */
94  h_t = (lapack_complex_double*)
95  LAPACKE_malloc( sizeof(lapack_complex_double) * ldh_t * MAX(1,n) );
96  if( h_t == NULL ) {
98  goto exit_level_0;
99  }
100  t_t = (lapack_complex_double*)
101  LAPACKE_malloc( sizeof(lapack_complex_double) * ldt_t * MAX(1,n) );
102  if( t_t == NULL ) {
104  goto exit_level_1;
105  }
106  if( LAPACKE_lsame( compq, 'i' ) || LAPACKE_lsame( compq, 'v' ) ) {
107  q_t = (lapack_complex_double*)
109  ldq_t * MAX(1,n) );
110  if( q_t == NULL ) {
112  goto exit_level_2;
113  }
114  }
115  if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
116  z_t = (lapack_complex_double*)
118  ldz_t * MAX(1,n) );
119  if( z_t == NULL ) {
121  goto exit_level_3;
122  }
123  }
124  /* Transpose input matrices */
125  LAPACKE_zge_trans( matrix_layout, n, n, h, ldh, h_t, ldh_t );
126  LAPACKE_zge_trans( matrix_layout, n, n, t, ldt, t_t, ldt_t );
127  if( LAPACKE_lsame( compq, 'v' ) ) {
128  LAPACKE_zge_trans( matrix_layout, n, n, q, ldq, q_t, ldq_t );
129  }
130  if( LAPACKE_lsame( compz, 'v' ) ) {
131  LAPACKE_zge_trans( matrix_layout, n, n, z, ldz, z_t, ldz_t );
132  }
133  /* Call LAPACK function and adjust info */
134  LAPACK_zhgeqz( &job, &compq, &compz, &n, &ilo, &ihi, h_t, &ldh_t, t_t,
135  &ldt_t, alpha, beta, q_t, &ldq_t, z_t, &ldz_t, work,
136  &lwork, rwork, &info );
137  if( info < 0 ) {
138  info = info - 1;
139  }
140  /* Transpose output matrices */
141  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, h_t, ldh_t, h, ldh );
142  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, t_t, ldt_t, t, ldt );
143  if( LAPACKE_lsame( compq, 'i' ) || LAPACKE_lsame( compq, 'v' ) ) {
144  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, q_t, ldq_t, q, ldq );
145  }
146  if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
147  LAPACKE_zge_trans( LAPACK_COL_MAJOR, n, n, z_t, ldz_t, z, ldz );
148  }
149  /* Release memory and exit */
150  if( LAPACKE_lsame( compz, 'i' ) || LAPACKE_lsame( compz, 'v' ) ) {
151  LAPACKE_free( z_t );
152  }
153 exit_level_3:
154  if( LAPACKE_lsame( compq, 'i' ) || LAPACKE_lsame( compq, 'v' ) ) {
155  LAPACKE_free( q_t );
156  }
157 exit_level_2:
158  LAPACKE_free( t_t );
159 exit_level_1:
160  LAPACKE_free( h_t );
161 exit_level_0:
162  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
163  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
164  }
165  } else {
166  info = -1;
167  LAPACKE_xerbla( "LAPACKE_zhgeqz_work", info );
168  }
169  return info;
170 }
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:119
#define lapack_complex_double
Definition: lapacke.h:90
#define MAX(x, y)
Definition: lapacke_utils.h:47
#define LAPACKE_free(p)
Definition: lapacke.h:113
#define LAPACKE_malloc(size)
Definition: lapacke.h:110
void LAPACK_zhgeqz(char *job, char *compq, char *compz, lapack_int *n, lapack_int *ilo, lapack_int *ihi, lapack_complex_double *h, lapack_int *ldh, lapack_complex_double *t, lapack_int *ldt, lapack_complex_double *alpha, lapack_complex_double *beta, lapack_complex_double *q, lapack_int *ldq, lapack_complex_double *z, lapack_int *ldz, lapack_complex_double *work, lapack_int *lwork, double *rwork, lapack_int *info)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:36
#define LAPACK_COL_MAJOR
Definition: lapacke.h:120
void LAPACKE_xerbla(const char *name, lapack_int info)
#define lapack_int
Definition: lapacke.h:47
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:123
void LAPACKE_zge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *in, lapack_int ldin, lapack_complex_double *out, lapack_int ldout)

Here is the call graph for this function:

Here is the caller graph for this function: