LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
zerrhex.f
Go to the documentation of this file.
1 *> \brief \b ZERRHEX
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZERRHE( PATH, NUNIT )
12 *
13 * .. Scalar Arguments ..
14 * CHARACTER*3 PATH
15 * INTEGER NUNIT
16 * ..
17 *
18 *
19 *> \par Purpose:
20 * =============
21 *>
22 *> \verbatim
23 *>
24 *> ZERRHE tests the error exits for the COMPLEX*16 routines
25 *> for Hermitian indefinite matrices.
26 *>
27 *> Note that this file is used only when the XBLAS are available,
28 *> otherwise zerrhe.f defines this subroutine.
29 *> \endverbatim
30 *
31 * Arguments:
32 * ==========
33 *
34 *> \param[in] PATH
35 *> \verbatim
36 *> PATH is CHARACTER*3
37 *> The LAPACK path name for the routines to be tested.
38 *> \endverbatim
39 *>
40 *> \param[in] NUNIT
41 *> \verbatim
42 *> NUNIT is INTEGER
43 *> The unit number for output.
44 *> \endverbatim
45 *
46 * Authors:
47 * ========
48 *
49 *> \author Univ. of Tennessee
50 *> \author Univ. of California Berkeley
51 *> \author Univ. of Colorado Denver
52 *> \author NAG Ltd.
53 *
54 *> \date November 2015
55 *
56 *> \ingroup complex16_lin
57 *
58 * =====================================================================
59  SUBROUTINE zerrhe( PATH, NUNIT )
60 *
61 * -- LAPACK test routine (version 3.6.0) --
62 * -- LAPACK is a software package provided by Univ. of Tennessee, --
63 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
64 * November 2015
65 *
66 * .. Scalar Arguments ..
67  CHARACTER*3 path
68  INTEGER nunit
69 * ..
70 *
71 * =====================================================================
72 *
73 *
74 * .. Parameters ..
75  INTEGER nmax
76  parameter ( nmax = 4 )
77 * ..
78 * .. Local Scalars ..
79  CHARACTER eq
80  CHARACTER*2 c2
81  INTEGER i, info, j, n_err_bnds, nparams
82  DOUBLE PRECISION anrm, rcond, berr
83 * ..
84 * .. Local Arrays ..
85  INTEGER ip( nmax )
86  DOUBLE PRECISION r( nmax ), r1( nmax ), r2( nmax ),
87  $ s( nmax ), err_bnds_n( nmax, 3 ),
88  $ err_bnds_c( nmax, 3 ), params( 1 )
89  COMPLEX*16 a( nmax, nmax ), af( nmax, nmax ), b( nmax ),
90  $ w( 2*nmax ), x( nmax )
91 * ..
92 * .. External Functions ..
93  LOGICAL lsamen
94  EXTERNAL lsamen
95 * ..
96 * .. External Subroutines ..
97  EXTERNAL alaesm, chkxer, zhecon, zhecon_rook, zherfs,
101  $ zhptrs, zherfsx
102 * ..
103 * .. Scalars in Common ..
104  LOGICAL lerr, ok
105  CHARACTER*32 srnamt
106  INTEGER infot, nout
107 * ..
108 * .. Common blocks ..
109  COMMON / infoc / infot, nout, ok, lerr
110  COMMON / srnamc / srnamt
111 * ..
112 * .. Intrinsic Functions ..
113  INTRINSIC dble, dcmplx
114 * ..
115 * .. Executable Statements ..
116 *
117  nout = nunit
118  WRITE( nout, fmt = * )
119  c2 = path( 2: 3 )
120 *
121 * Set the variables to innocuous values.
122 *
123  DO 20 j = 1, nmax
124  DO 10 i = 1, nmax
125  a( i, j ) = dcmplx( 1.d0 / dble( i+j ),
126  $ -1.d0 / dble( i+j ) )
127  af( i, j ) = dcmplx( 1.d0 / dble( i+j ),
128  $ -1.d0 / dble( i+j ) )
129  10 CONTINUE
130  b( j ) = 0.d0
131  r1( j ) = 0.d0
132  r2( j ) = 0.d0
133  w( j ) = 0.d0
134  x( j ) = 0.d0
135  s( j ) = 0.d0
136  ip( j ) = j
137  20 CONTINUE
138  anrm = 1.0d0
139  ok = .true.
140 *
141 * Test error exits of the routines that use factorization
142 * of a Hermitian indefinite matrix with patrial
143 * (Bunch-Kaufman) diagonal pivoting method.
144 *
145  IF( lsamen( 2, c2, 'HE' ) ) THEN
146 *
147 * ZHETRF
148 *
149  srnamt = 'ZHETRF'
150  infot = 1
151  CALL zhetrf( '/', 0, a, 1, ip, w, 1, info )
152  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
153  infot = 2
154  CALL zhetrf( 'U', -1, a, 1, ip, w, 1, info )
155  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
156  infot = 4
157  CALL zhetrf( 'U', 2, a, 1, ip, w, 4, info )
158  CALL chkxer( 'ZHETRF', infot, nout, lerr, ok )
159 *
160 * ZHETF2
161 *
162  srnamt = 'ZHETF2'
163  infot = 1
164  CALL zhetf2( '/', 0, a, 1, ip, info )
165  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
166  infot = 2
167  CALL zhetf2( 'U', -1, a, 1, ip, info )
168  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
169  infot = 4
170  CALL zhetf2( 'U', 2, a, 1, ip, info )
171  CALL chkxer( 'ZHETF2', infot, nout, lerr, ok )
172 *
173 * ZHETRI
174 *
175  srnamt = 'ZHETRI'
176  infot = 1
177  CALL zhetri( '/', 0, a, 1, ip, w, info )
178  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
179  infot = 2
180  CALL zhetri( 'U', -1, a, 1, ip, w, info )
181  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
182  infot = 4
183  CALL zhetri( 'U', 2, a, 1, ip, w, info )
184  CALL chkxer( 'ZHETRI', infot, nout, lerr, ok )
185 *
186 * ZHETRI2
187 *
188  srnamt = 'ZHETRI2'
189  infot = 1
190  CALL zhetri2( '/', 0, a, 1, ip, w, 1, info )
191  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
192  infot = 2
193  CALL zhetri2( 'U', -1, a, 1, ip, w, 1, info )
194  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
195  infot = 4
196  CALL zhetri2( 'U', 2, a, 1, ip, w, 1, info )
197  CALL chkxer( 'ZHETRI2', infot, nout, lerr, ok )
198 *
199 * ZHETRS
200 *
201  srnamt = 'ZHETRS'
202  infot = 1
203  CALL zhetrs( '/', 0, 0, a, 1, ip, b, 1, info )
204  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
205  infot = 2
206  CALL zhetrs( 'U', -1, 0, a, 1, ip, b, 1, info )
207  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
208  infot = 3
209  CALL zhetrs( 'U', 0, -1, a, 1, ip, b, 1, info )
210  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
211  infot = 5
212  CALL zhetrs( 'U', 2, 1, a, 1, ip, b, 2, info )
213  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
214  infot = 8
215  CALL zhetrs( 'U', 2, 1, a, 2, ip, b, 1, info )
216  CALL chkxer( 'ZHETRS', infot, nout, lerr, ok )
217 *
218 * ZHERFS
219 *
220  srnamt = 'ZHERFS'
221  infot = 1
222  CALL zherfs( '/', 0, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2, w,
223  $ r, info )
224  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
225  infot = 2
226  CALL zherfs( 'U', -1, 0, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
227  $ w, r, info )
228  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
229  infot = 3
230  CALL zherfs( 'U', 0, -1, a, 1, af, 1, ip, b, 1, x, 1, r1, r2,
231  $ w, r, info )
232  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
233  infot = 5
234  CALL zherfs( 'U', 2, 1, a, 1, af, 2, ip, b, 2, x, 2, r1, r2, w,
235  $ r, info )
236  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
237  infot = 7
238  CALL zherfs( 'U', 2, 1, a, 2, af, 1, ip, b, 2, x, 2, r1, r2, w,
239  $ r, info )
240  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
241  infot = 10
242  CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 1, x, 2, r1, r2, w,
243  $ r, info )
244  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
245  infot = 12
246  CALL zherfs( 'U', 2, 1, a, 2, af, 2, ip, b, 2, x, 1, r1, r2, w,
247  $ r, info )
248  CALL chkxer( 'ZHERFS', infot, nout, lerr, ok )
249 *
250 * ZHERFSX
251 *
252  n_err_bnds = 3
253  nparams = 0
254  srnamt = 'ZHERFSX'
255  infot = 1
256  CALL zherfsx( '/', eq, 0, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
257  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
258  $ params, w, r, info )
259  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
260  infot = 2
261  CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
262  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
263  $ params, w, r, info )
264  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
265  eq = 'N'
266  infot = 3
267  CALL zherfsx( 'U', eq, -1, 0, a, 1, af, 1, ip, s, b, 1, x, 1,
268  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
269  $ params, w, r, info )
270  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
271  infot = 4
272  CALL zherfsx( 'U', eq, 0, -1, a, 1, af, 1, ip, s, b, 1, x, 1,
273  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
274  $ params, w, r, info )
275  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
276  infot = 6
277  CALL zherfsx( 'U', eq, 2, 1, a, 1, af, 2, ip, s, b, 2, x, 2,
278  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
279  $ params, w, r, info )
280  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
281  infot = 8
282  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 1, ip, s, b, 2, x, 2,
283  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
284  $ params, w, r, info )
285  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
286  infot = 12
287  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 1, x, 2,
288  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
289  $ params, w, r, info )
290  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
291  infot = 14
292  CALL zherfsx( 'U', eq, 2, 1, a, 2, af, 2, ip, s, b, 2, x, 1,
293  $ rcond, berr, n_err_bnds, err_bnds_n, err_bnds_c, nparams,
294  $ params, w, r, info )
295  CALL chkxer( 'ZHERFSX', infot, nout, lerr, ok )
296 *
297 * ZHECON
298 *
299  srnamt = 'ZHECON'
300  infot = 1
301  CALL zhecon( '/', 0, a, 1, ip, anrm, rcond, w, info )
302  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
303  infot = 2
304  CALL zhecon( 'U', -1, a, 1, ip, anrm, rcond, w, info )
305  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
306  infot = 4
307  CALL zhecon( 'U', 2, a, 1, ip, anrm, rcond, w, info )
308  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
309  infot = 6
310  CALL zhecon( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
311  CALL chkxer( 'ZHECON', infot, nout, lerr, ok )
312 *
313 * Test error exits of the routines that use factorization
314 * of a Hermitian indefinite matrix with "rook"
315 * (bounded Bunch-Kaufman) diagonal pivoting method.
316 *
317  ELSE IF( lsamen( 2, c2, 'HR' ) ) THEN
318 *
319 * ZHETRF_ROOK
320 *
321  srnamt = 'ZHETRF_ROOK'
322  infot = 1
323  CALL zhetrf_rook( '/', 0, a, 1, ip, w, 1, info )
324  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
325  infot = 2
326  CALL zhetrf_rook( 'U', -1, a, 1, ip, w, 1, info )
327  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
328  infot = 4
329  CALL zhetrf_rook( 'U', 2, a, 1, ip, w, 4, info )
330  CALL chkxer( 'ZHETRF_ROOK', infot, nout, lerr, ok )
331 *
332 * ZHETF2_ROOK
333 *
334  srnamt = 'ZHETF2_ROOK'
335  infot = 1
336  CALL zhetf2_rook( '/', 0, a, 1, ip, info )
337  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
338  infot = 2
339  CALL zhetf2_rook( 'U', -1, a, 1, ip, info )
340  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
341  infot = 4
342  CALL zhetf2_rook( 'U', 2, a, 1, ip, info )
343  CALL chkxer( 'ZHETF2_ROOK', infot, nout, lerr, ok )
344 *
345 * ZHETRI_ROOK
346 *
347  srnamt = 'ZHETRI_ROOK'
348  infot = 1
349  CALL zhetri_rook( '/', 0, a, 1, ip, w, info )
350  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
351  infot = 2
352  CALL zhetri_rook( 'U', -1, a, 1, ip, w, info )
353  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
354  infot = 4
355  CALL zhetri_rook( 'U', 2, a, 1, ip, w, info )
356  CALL chkxer( 'ZHETRI_ROOK', infot, nout, lerr, ok )
357 *
358 * ZHETRS_ROOK
359 *
360  srnamt = 'ZHETRS_ROOK'
361  infot = 1
362  CALL zhetrs_rook( '/', 0, 0, a, 1, ip, b, 1, info )
363  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
364  infot = 2
365  CALL zhetrs_rook( 'U', -1, 0, a, 1, ip, b, 1, info )
366  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
367  infot = 3
368  CALL zhetrs_rook( 'U', 0, -1, a, 1, ip, b, 1, info )
369  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
370  infot = 5
371  CALL zhetrs_rook( 'U', 2, 1, a, 1, ip, b, 2, info )
372  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
373  infot = 8
374  CALL zhetrs_rook( 'U', 2, 1, a, 2, ip, b, 1, info )
375  CALL chkxer( 'ZHETRS_ROOK', infot, nout, lerr, ok )
376 *
377 * ZHECON_ROOK
378 *
379  srnamt = 'ZHECON_ROOK'
380  infot = 1
381  CALL zhecon_rook( '/', 0, a, 1, ip, anrm, rcond, w, info )
382  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
383  infot = 2
384  CALL zhecon_rook( 'U', -1, a, 1, ip, anrm, rcond, w, info )
385  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
386  infot = 4
387  CALL zhecon_rook( 'U', 2, a, 1, ip, anrm, rcond, w, info )
388  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
389  infot = 6
390  CALL zhecon_rook( 'U', 1, a, 1, ip, -anrm, rcond, w, info )
391  CALL chkxer( 'ZHECON_ROOK', infot, nout, lerr, ok )
392 *
393 * Test error exits of the routines that use factorization
394 * of a Hermitian indefinite packed matrix with patrial
395 * (Bunch-Kaufman) diagonal pivoting method.
396 *
397  ELSE IF( lsamen( 2, c2, 'HP' ) ) THEN
398 *
399 * ZHPTRF
400 *
401  srnamt = 'ZHPTRF'
402  infot = 1
403  CALL zhptrf( '/', 0, a, ip, info )
404  CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
405  infot = 2
406  CALL zhptrf( 'U', -1, a, ip, info )
407  CALL chkxer( 'ZHPTRF', infot, nout, lerr, ok )
408 *
409 * ZHPTRI
410 *
411  srnamt = 'ZHPTRI'
412  infot = 1
413  CALL zhptri( '/', 0, a, ip, w, info )
414  CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
415  infot = 2
416  CALL zhptri( 'U', -1, a, ip, w, info )
417  CALL chkxer( 'ZHPTRI', infot, nout, lerr, ok )
418 *
419 * ZHPTRS
420 *
421  srnamt = 'ZHPTRS'
422  infot = 1
423  CALL zhptrs( '/', 0, 0, a, ip, b, 1, info )
424  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
425  infot = 2
426  CALL zhptrs( 'U', -1, 0, a, ip, b, 1, info )
427  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
428  infot = 3
429  CALL zhptrs( 'U', 0, -1, a, ip, b, 1, info )
430  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
431  infot = 7
432  CALL zhptrs( 'U', 2, 1, a, ip, b, 1, info )
433  CALL chkxer( 'ZHPTRS', infot, nout, lerr, ok )
434 *
435 * ZHPRFS
436 *
437  srnamt = 'ZHPRFS'
438  infot = 1
439  CALL zhprfs( '/', 0, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
440  $ info )
441  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
442  infot = 2
443  CALL zhprfs( 'U', -1, 0, a, af, ip, b, 1, x, 1, r1, r2, w, r,
444  $ info )
445  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
446  infot = 3
447  CALL zhprfs( 'U', 0, -1, a, af, ip, b, 1, x, 1, r1, r2, w, r,
448  $ info )
449  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
450  infot = 8
451  CALL zhprfs( 'U', 2, 1, a, af, ip, b, 1, x, 2, r1, r2, w, r,
452  $ info )
453  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
454  infot = 10
455  CALL zhprfs( 'U', 2, 1, a, af, ip, b, 2, x, 1, r1, r2, w, r,
456  $ info )
457  CALL chkxer( 'ZHPRFS', infot, nout, lerr, ok )
458 *
459 * ZHPCON
460 *
461  srnamt = 'ZHPCON'
462  infot = 1
463  CALL zhpcon( '/', 0, a, ip, anrm, rcond, w, info )
464  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
465  infot = 2
466  CALL zhpcon( 'U', -1, a, ip, anrm, rcond, w, info )
467  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
468  infot = 5
469  CALL zhpcon( 'U', 1, a, ip, -anrm, rcond, w, info )
470  CALL chkxer( 'ZHPCON', infot, nout, lerr, ok )
471  END IF
472 *
473 * Print a summary line.
474 *
475  CALL alaesm( path, ok, nout )
476 *
477  RETURN
478 *
479 * End of ZERRHE
480 *
481  END
subroutine zhetri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRI2
Definition: zhetri2.f:129
subroutine zherfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZHERFS
Definition: zherfs.f:194
subroutine zhptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
ZHPTRS
Definition: zhptrs.f:117
subroutine zhetrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: zhetrf_rook.f:214
subroutine zhprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZHPRFS
Definition: zhprfs.f:182
subroutine zerrhe(PATH, NUNIT)
ZERRHE
Definition: zerrhe.f:57
subroutine zhetf2(UPLO, N, A, LDA, IPIV, INFO)
ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal pivoting method (...
Definition: zhetf2.f:193
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:76
subroutine zhecon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
Definition: zhecon_rook.f:141
subroutine alaesm(PATH, OK, NOUT)
ALAESM
Definition: alaesm.f:65
subroutine zhptrf(UPLO, N, AP, IPIV, INFO)
ZHPTRF
Definition: zhptrf.f:161
subroutine zherfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
ZHERFSX
Definition: zherfsx.f:403
subroutine zhptri(UPLO, N, AP, IPIV, WORK, INFO)
ZHPTRI
Definition: zhptri.f:111
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
Definition: cblat2.f:3199
subroutine zhetri(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZHETRI
Definition: zhetri.f:116
subroutine zhetri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
Definition: zhetri_rook.f:130
subroutine zhetf2_rook(UPLO, N, A, LDA, IPIV, INFO)
ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: zhetf2_rook.f:196
subroutine zhetrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF
Definition: zhetrf.f:179
subroutine zhpcon(UPLO, N, AP, IPIV, ANORM, RCOND, WORK, INFO)
ZHPCON
Definition: zhpcon.f:120
subroutine zhetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZHETRS
Definition: zhetrs.f:122
subroutine zhetrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
Definition: zhetrs_rook.f:138
subroutine zhecon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZHECON
Definition: zhecon.f:127