LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine zckgqr ( integer NM, integer, dimension( * ) MVAL, integer NP, integer, dimension( * ) PVAL, integer NN, integer, dimension( * ) NVAL, integer NMATS, integer, dimension( 4 ) ISEED, double precision THRESH, integer NMAX, complex*16, dimension( * ) A, complex*16, dimension( * ) AF, complex*16, dimension( * ) AQ, complex*16, dimension( * ) AR, complex*16, dimension( * ) TAUA, complex*16, dimension( * ) B, complex*16, dimension( * ) BF, complex*16, dimension( * ) BZ, complex*16, dimension( * ) BT, complex*16, dimension( * ) BWK, complex*16, dimension( * ) TAUB, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NIN, integer NOUT, integer INFO )

ZCKGQR

Purpose:
``` ZCKGQR tests
ZGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B,
ZGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B.```
Parameters
 [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row(column) dimension M.``` [in] NP ``` NP is INTEGER The number of values of P contained in the vector PVAL.``` [in] PVAL ``` PVAL is INTEGER array, dimension (NP) The values of the matrix row(column) dimension P.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column(row) dimension N.``` [in] NMATS ``` NMATS is INTEGER The number of matrix types to be tested for each combination of matrix dimensions. If NMATS >= NTYPES (the maximum number of matrix types), then all the different types are generated for testing. If NMATS < NTYPES, another input line is read to get the numbers of the matrix types to be used.``` [in,out] ISEED ``` ISEED is INTEGER array, dimension (4) On entry, the seed of the random number generator. The array elements should be between 0 and 4095, otherwise they will be reduced mod 4096, and ISEED(4) must be odd. On exit, the next seed in the random number sequence after all the test matrices have been generated.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for M or N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AF ` AF is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AQ ` AQ is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] AR ` AR is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] TAUA ` TAUA is COMPLEX*16 array, dimension (NMAX)` [out] B ` B is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] BF ` BF is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] BZ ` BZ is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] BT ` BT is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] BWK ` BWK is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] TAUB ` TAUB is COMPLEX*16 array, dimension (NMAX)` [out] WORK ` WORK is COMPLEX*16 array, dimension (NMAX*NMAX)` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (NMAX)` [in] NIN ``` NIN is INTEGER The unit number for input.``` [in] NOUT ``` NOUT is INTEGER The unit number for output.``` [out] INFO ``` INFO is INTEGER = 0 : successful exit > 0 : If ZLATMS returns an error code, the absolute value of it is returned.```
Date
November 2011

Definition at line 213 of file zckgqr.f.

213 *
214 * -- LAPACK test routine (version 3.4.0) --
215 * -- LAPACK is a software package provided by Univ. of Tennessee, --
216 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
217 * November 2011
218 *
219 * .. Scalar Arguments ..
220  INTEGER info, nin, nm, nmats, nmax, nn, nout, np
221  DOUBLE PRECISION thresh
222 * ..
223 * .. Array Arguments ..
224  INTEGER iseed( 4 ), mval( * ), nval( * ), pval( * )
225  DOUBLE PRECISION rwork( * )
226  COMPLEX*16 a( * ), af( * ), aq( * ), ar( * ), b( * ),
227  \$ bf( * ), bt( * ), bwk( * ), bz( * ), taua( * ),
228  \$ taub( * ), work( * )
229 * ..
230 *
231 * =====================================================================
232 *
233 * .. Parameters ..
234  INTEGER ntests
235  parameter ( ntests = 7 )
236  INTEGER ntypes
237  parameter ( ntypes = 8 )
238 * ..
239 * .. Local Scalars ..
240  LOGICAL firstt
241  CHARACTER dista, distb, type
242  CHARACTER*3 path
243  INTEGER i, iinfo, im, imat, in, ip, kla, klb, kua, kub,
244  \$ lda, ldb, lwork, m, modea, modeb, n, nfail,
245  \$ nrun, nt, p
246  DOUBLE PRECISION anorm, bnorm, cndnma, cndnmb
247 * ..
248 * .. Local Arrays ..
249  LOGICAL dotype( ntypes )
250  DOUBLE PRECISION result( ntests )
251 * ..
252 * .. External Subroutines ..
253  EXTERNAL alahdg, alareq, alasum, dlatb9, zgqrts, zgrqts,
254  \$ zlatms
255 * ..
256 * .. Intrinsic Functions ..
257  INTRINSIC abs
258 * ..
259 * .. Executable Statements ..
260 *
261 * Initialize constants.
262 *
263  path( 1: 3 ) = 'GQR'
264  info = 0
265  nrun = 0
266  nfail = 0
267  firstt = .true.
268  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
269  lda = nmax
270  ldb = nmax
271  lwork = nmax*nmax
272 *
273 * Do for each value of M in MVAL.
274 *
275  DO 60 im = 1, nm
276  m = mval( im )
277 *
278 * Do for each value of P in PVAL.
279 *
280  DO 50 ip = 1, np
281  p = pval( ip )
282 *
283 * Do for each value of N in NVAL.
284 *
285  DO 40 in = 1, nn
286  n = nval( in )
287 *
288  DO 30 imat = 1, ntypes
289 *
290 * Do the tests only if DOTYPE( IMAT ) is true.
291 *
292  IF( .NOT.dotype( imat ) )
293  \$ GO TO 30
294 *
295 * Test ZGGRQF
296 *
297 * Set up parameters with DLATB9 and generate test
298 * matrices A and B with ZLATMS.
299 *
300  CALL dlatb9( 'GRQ', imat, m, p, n, TYPE, kla, kua,
301  \$ klb, kub, anorm, bnorm, modea, modeb,
302  \$ cndnma, cndnmb, dista, distb )
303 *
304  CALL zlatms( m, n, dista, iseed, TYPE, rwork, modea,
305  \$ cndnma, anorm, kla, kua, 'No packing', a,
306  \$ lda, work, iinfo )
307  IF( iinfo.NE.0 ) THEN
308  WRITE( nout, fmt = 9999 )iinfo
309  info = abs( iinfo )
310  GO TO 30
311  END IF
312 *
313  CALL zlatms( p, n, distb, iseed, TYPE, rwork, modeb,
314  \$ cndnmb, bnorm, klb, kub, 'No packing', b,
315  \$ ldb, work, iinfo )
316  IF( iinfo.NE.0 ) THEN
317  WRITE( nout, fmt = 9999 )iinfo
318  info = abs( iinfo )
319  GO TO 30
320  END IF
321 *
322  nt = 4
323 *
324  CALL zgrqts( m, p, n, a, af, aq, ar, lda, taua, b, bf,
325  \$ bz, bt, bwk, ldb, taub, work, lwork,
326  \$ rwork, result )
327 *
328 * Print information about the tests that did not
329 * pass the threshold.
330 *
331  DO 10 i = 1, nt
332  IF( result( i ).GE.thresh ) THEN
333  IF( nfail.EQ.0 .AND. firstt ) THEN
334  firstt = .false.
335  CALL alahdg( nout, 'GRQ' )
336  END IF
337  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
338  \$ result( i )
339  nfail = nfail + 1
340  END IF
341  10 CONTINUE
342  nrun = nrun + nt
343 *
344 * Test ZGGQRF
345 *
346 * Set up parameters with DLATB9 and generate test
347 * matrices A and B with ZLATMS.
348 *
349  CALL dlatb9( 'GQR', imat, m, p, n, TYPE, kla, kua,
350  \$ klb, kub, anorm, bnorm, modea, modeb,
351  \$ cndnma, cndnmb, dista, distb )
352 *
353  CALL zlatms( n, m, dista, iseed, TYPE, rwork, modea,
354  \$ cndnma, anorm, kla, kua, 'No packing', a,
355  \$ lda, work, iinfo )
356  IF( iinfo.NE.0 ) THEN
357  WRITE( nout, fmt = 9999 )iinfo
358  info = abs( iinfo )
359  GO TO 30
360  END IF
361 *
362  CALL zlatms( n, p, distb, iseed, TYPE, rwork, modea,
363  \$ cndnma, bnorm, klb, kub, 'No packing', b,
364  \$ ldb, work, iinfo )
365  IF( iinfo.NE.0 ) THEN
366  WRITE( nout, fmt = 9999 )iinfo
367  info = abs( iinfo )
368  GO TO 30
369  END IF
370 *
371  nt = 4
372 *
373  CALL zgqrts( n, m, p, a, af, aq, ar, lda, taua, b, bf,
374  \$ bz, bt, bwk, ldb, taub, work, lwork,
375  \$ rwork, result )
376 *
377 * Print information about the tests that did not
378 * pass the threshold.
379 *
380  DO 20 i = 1, nt
381  IF( result( i ).GE.thresh ) THEN
382  IF( nfail.EQ.0 .AND. firstt ) THEN
383  firstt = .false.
384  CALL alahdg( nout, path )
385  END IF
386  WRITE( nout, fmt = 9997 )n, m, p, imat, i,
387  \$ result( i )
388  nfail = nfail + 1
389  END IF
390  20 CONTINUE
391  nrun = nrun + nt
392 *
393  30 CONTINUE
394  40 CONTINUE
395  50 CONTINUE
396  60 CONTINUE
397 *
398 * Print a summary of the results.
399 *
400  CALL alasum( path, nout, nfail, nrun, 0 )
401 *
402  9999 FORMAT( ' ZLATMS in ZCKGQR: INFO = ', i5 )
403  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
404  \$ ', test ', i2, ', ratio=', g13.6 )
405  9997 FORMAT( ' N=', i4, ' M=', i4, ', P=', i4, ', type ', i2,
406  \$ ', test ', i2, ', ratio=', g13.6 )
407  RETURN
408 *
409 * End of ZCKGQR
410 *
subroutine zgqrts(N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
ZGQRTS
Definition: zgqrts.f:178
subroutine zgrqts(M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
ZGRQTS
Definition: zgrqts.f:178
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:92
subroutine dlatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
DLATB9
Definition: dlatb9.f:172
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:334
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:64
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75

Here is the call graph for this function:

Here is the caller graph for this function: