LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine dggsvd ( character  JOBU,
character  JOBV,
character  JOBQ,
integer  M,
integer  N,
integer  P,
integer  K,
integer  L,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( * )  ALPHA,
double precision, dimension( * )  BETA,
double precision, dimension( ldu, * )  U,
integer  LDU,
double precision, dimension( ldv, * )  V,
integer  LDV,
double precision, dimension( ldq, * )  Q,
integer  LDQ,
double precision, dimension( * )  WORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

DGGSVD computes the singular value decomposition (SVD) for OTHER matrices

Download DGGSVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine DGGSVD3.

 DGGSVD computes the generalized singular value decomposition (GSVD)
 of an M-by-N real matrix A and P-by-N real matrix B:

       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )

 where U, V and Q are orthogonal matrices.
 Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
 then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
 D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
 following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the orthogonal
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**T.
 If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
 also equal to the CS decomposition of A and B. Furthermore, the GSVD
 can be used to derive the solution of the eigenvalue problem:
                      A**T*A x = lambda* B**T*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, D1 and D2 are
 ``diagonal''.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                      X = Q*( I   0    )
                            ( 0 inv(R) ).
Parameters
[in]JOBU
          JOBU is CHARACTER*1
          = 'U':  Orthogonal matrix U is computed;
          = 'N':  U is not computed.
[in]JOBV
          JOBV is CHARACTER*1
          = 'V':  Orthogonal matrix V is computed;
          = 'N':  V is not computed.
[in]JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Orthogonal matrix Q is computed;
          = 'N':  Q is not computed.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[out]K
          K is INTEGER
[out]L
          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**T,B**T)**T.
[in,out]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains the triangular matrix R if M-K-L < 0.
          See Purpose for details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]ALPHA
          ALPHA is DOUBLE PRECISION array, dimension (N)
[out]BETA
          BETA is DOUBLE PRECISION array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0
[out]U
          U is DOUBLE PRECISION array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
          If JOBU = 'N', U is not referenced.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
[out]V
          V is DOUBLE PRECISION array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
          If JOBV = 'N', V is not referenced.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
[out]Q
          Q is DOUBLE PRECISION array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
          If JOBQ = 'N', Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
[out]WORK
          WORK is DOUBLE PRECISION array,
                      dimension (max(3*N,M,P)+N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine DTGSJA.
Internal Parameters:
  TOLA    DOUBLE PRECISION
  TOLB    DOUBLE PRECISION
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A',B')**T. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 336 of file dggsvd.f.

336 *
337 * -- LAPACK driver routine (version 3.4.0) --
338 * -- LAPACK is a software package provided by Univ. of Tennessee, --
339 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
340 * November 2011
341 *
342 * .. Scalar Arguments ..
343  CHARACTER jobq, jobu, jobv
344  INTEGER info, k, l, lda, ldb, ldq, ldu, ldv, m, n, p
345 * ..
346 * .. Array Arguments ..
347  INTEGER iwork( * )
348  DOUBLE PRECISION a( lda, * ), alpha( * ), b( ldb, * ),
349  $ beta( * ), q( ldq, * ), u( ldu, * ),
350  $ v( ldv, * ), work( * )
351 * ..
352 *
353 * =====================================================================
354 *
355 * .. Local Scalars ..
356  LOGICAL wantq, wantu, wantv
357  INTEGER i, ibnd, isub, j, ncycle
358  DOUBLE PRECISION anorm, bnorm, smax, temp, tola, tolb, ulp, unfl
359 * ..
360 * .. External Functions ..
361  LOGICAL lsame
362  DOUBLE PRECISION dlamch, dlange
363  EXTERNAL lsame, dlamch, dlange
364 * ..
365 * .. External Subroutines ..
366  EXTERNAL dcopy, dggsvp, dtgsja, xerbla
367 * ..
368 * .. Intrinsic Functions ..
369  INTRINSIC max, min
370 * ..
371 * .. Executable Statements ..
372 *
373 * Test the input parameters
374 *
375  wantu = lsame( jobu, 'U' )
376  wantv = lsame( jobv, 'V' )
377  wantq = lsame( jobq, 'Q' )
378 *
379  info = 0
380  IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
381  info = -1
382  ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
383  info = -2
384  ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
385  info = -3
386  ELSE IF( m.LT.0 ) THEN
387  info = -4
388  ELSE IF( n.LT.0 ) THEN
389  info = -5
390  ELSE IF( p.LT.0 ) THEN
391  info = -6
392  ELSE IF( lda.LT.max( 1, m ) ) THEN
393  info = -10
394  ELSE IF( ldb.LT.max( 1, p ) ) THEN
395  info = -12
396  ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
397  info = -16
398  ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
399  info = -18
400  ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
401  info = -20
402  END IF
403  IF( info.NE.0 ) THEN
404  CALL xerbla( 'DGGSVD', -info )
405  RETURN
406  END IF
407 *
408 * Compute the Frobenius norm of matrices A and B
409 *
410  anorm = dlange( '1', m, n, a, lda, work )
411  bnorm = dlange( '1', p, n, b, ldb, work )
412 *
413 * Get machine precision and set up threshold for determining
414 * the effective numerical rank of the matrices A and B.
415 *
416  ulp = dlamch( 'Precision' )
417  unfl = dlamch( 'Safe Minimum' )
418  tola = max( m, n )*max( anorm, unfl )*ulp
419  tolb = max( p, n )*max( bnorm, unfl )*ulp
420 *
421 * Preprocessing
422 *
423  CALL dggsvp( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
424  $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
425  $ work( n+1 ), info )
426 *
427 * Compute the GSVD of two upper "triangular" matrices
428 *
429  CALL dtgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
430  $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
431  $ work, ncycle, info )
432 *
433 * Sort the singular values and store the pivot indices in IWORK
434 * Copy ALPHA to WORK, then sort ALPHA in WORK
435 *
436  CALL dcopy( n, alpha, 1, work, 1 )
437  ibnd = min( l, m-k )
438  DO 20 i = 1, ibnd
439 *
440 * Scan for largest ALPHA(K+I)
441 *
442  isub = i
443  smax = work( k+i )
444  DO 10 j = i + 1, ibnd
445  temp = work( k+j )
446  IF( temp.GT.smax ) THEN
447  isub = j
448  smax = temp
449  END IF
450  10 CONTINUE
451  IF( isub.NE.i ) THEN
452  work( k+isub ) = work( k+i )
453  work( k+i ) = smax
454  iwork( k+i ) = k + isub
455  ELSE
456  iwork( k+i ) = k + i
457  END IF
458  20 CONTINUE
459 *
460  RETURN
461 *
462 * End of DGGSVD
463 *
subroutine dggsvp(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, TAU, WORK, INFO)
DGGSVP
Definition: dggsvp.f:258
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
double precision function dlange(NORM, M, N, A, LDA, WORK)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlange.f:116
subroutine dtgsja(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO)
DTGSJA
Definition: dtgsja.f:380
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function: