LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine ztbmv ( character  UPLO,
character  TRANS,
character  DIAG,
integer  N,
integer  K,
complex*16, dimension(lda,*)  A,
integer  LDA,
complex*16, dimension(*)  X,
integer  INCX 
)

ZTBMV

Purpose:
 ZTBMV  performs one of the matrix-vector operations

    x := A*x,   or   x := A**T*x,   or   x := A**H*x,

 where x is an n element vector and  A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
           On entry, UPLO specifies whether the matrix is an upper or
           lower triangular matrix as follows:

              UPLO = 'U' or 'u'   A is an upper triangular matrix.

              UPLO = 'L' or 'l'   A is a lower triangular matrix.
[in]TRANS
          TRANS is CHARACTER*1
           On entry, TRANS specifies the operation to be performed as
           follows:

              TRANS = 'N' or 'n'   x := A*x.

              TRANS = 'T' or 't'   x := A**T*x.

              TRANS = 'C' or 'c'   x := A**H*x.
[in]DIAG
          DIAG is CHARACTER*1
           On entry, DIAG specifies whether or not A is unit
           triangular as follows:

              DIAG = 'U' or 'u'   A is assumed to be unit triangular.

              DIAG = 'N' or 'n'   A is not assumed to be unit
                                  triangular.
[in]N
          N is INTEGER
           On entry, N specifies the order of the matrix A.
           N must be at least zero.
[in]K
          K is INTEGER
           On entry with UPLO = 'U' or 'u', K specifies the number of
           super-diagonals of the matrix A.
           On entry with UPLO = 'L' or 'l', K specifies the number of
           sub-diagonals of the matrix A.
           K must satisfy  0 .le. K.
[in]A
          A is COMPLEX*16 array of DIMENSION ( LDA, n ).
           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
           by n part of the array A must contain the upper triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row
           ( k + 1 ) of the array, the first super-diagonal starting at
           position 2 in row k, and so on. The top left k by k triangle
           of the array A is not referenced.
           The following program segment will transfer an upper
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = K + 1 - J
                    DO 10, I = MAX( 1, J - K ), J
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
           by n part of the array A must contain the lower triangular
           band part of the matrix of coefficients, supplied column by
           column, with the leading diagonal of the matrix in row 1 of
           the array, the first sub-diagonal starting at position 1 in
           row 2, and so on. The bottom right k by k triangle of the
           array A is not referenced.
           The following program segment will transfer a lower
           triangular band matrix from conventional full matrix storage
           to band storage:

                 DO 20, J = 1, N
                    M = 1 - J
                    DO 10, I = J, MIN( N, J + K )
                       A( M + I, J ) = matrix( I, J )
              10    CONTINUE
              20 CONTINUE

           Note that when DIAG = 'U' or 'u' the elements of the array A
           corresponding to the diagonal elements of the matrix are not
           referenced, but are assumed to be unity.
[in]LDA
          LDA is INTEGER
           On entry, LDA specifies the first dimension of A as declared
           in the calling (sub) program. LDA must be at least
           ( k + 1 ).
[in]X
          X is (input/output) COMPLEX*16 array of dimension at least
           ( 1 + ( n - 1 )*abs( INCX ) ).
           Before entry, the incremented array X must contain the n
           element vector x. On exit, X is overwritten with the
           tranformed vector x.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011
Further Details:
  Level 2 Blas routine.
  The vector and matrix arguments are not referenced when N = 0, or M = 0

  -- Written on 22-October-1986.
     Jack Dongarra, Argonne National Lab.
     Jeremy Du Croz, Nag Central Office.
     Sven Hammarling, Nag Central Office.
     Richard Hanson, Sandia National Labs.

Definition at line 188 of file ztbmv.f.

188 *
189 * -- Reference BLAS level2 routine (version 3.4.0) --
190 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
191 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
192 * November 2011
193 *
194 * .. Scalar Arguments ..
195  INTEGER incx,k,lda,n
196  CHARACTER diag,trans,uplo
197 * ..
198 * .. Array Arguments ..
199  COMPLEX*16 a(lda,*),x(*)
200 * ..
201 *
202 * =====================================================================
203 *
204 * .. Parameters ..
205  COMPLEX*16 zero
206  parameter(zero= (0.0d+0,0.0d+0))
207 * ..
208 * .. Local Scalars ..
209  COMPLEX*16 temp
210  INTEGER i,info,ix,j,jx,kplus1,kx,l
211  LOGICAL noconj,nounit
212 * ..
213 * .. External Functions ..
214  LOGICAL lsame
215  EXTERNAL lsame
216 * ..
217 * .. External Subroutines ..
218  EXTERNAL xerbla
219 * ..
220 * .. Intrinsic Functions ..
221  INTRINSIC dconjg,max,min
222 * ..
223 *
224 * Test the input parameters.
225 *
226  info = 0
227  IF (.NOT.lsame(uplo,'U') .AND. .NOT.lsame(uplo,'L')) THEN
228  info = 1
229  ELSE IF (.NOT.lsame(trans,'N') .AND. .NOT.lsame(trans,'T') .AND.
230  + .NOT.lsame(trans,'C')) THEN
231  info = 2
232  ELSE IF (.NOT.lsame(diag,'U') .AND. .NOT.lsame(diag,'N')) THEN
233  info = 3
234  ELSE IF (n.LT.0) THEN
235  info = 4
236  ELSE IF (k.LT.0) THEN
237  info = 5
238  ELSE IF (lda.LT. (k+1)) THEN
239  info = 7
240  ELSE IF (incx.EQ.0) THEN
241  info = 9
242  END IF
243  IF (info.NE.0) THEN
244  CALL xerbla('ZTBMV ',info)
245  RETURN
246  END IF
247 *
248 * Quick return if possible.
249 *
250  IF (n.EQ.0) RETURN
251 *
252  noconj = lsame(trans,'T')
253  nounit = lsame(diag,'N')
254 *
255 * Set up the start point in X if the increment is not unity. This
256 * will be ( N - 1 )*INCX too small for descending loops.
257 *
258  IF (incx.LE.0) THEN
259  kx = 1 - (n-1)*incx
260  ELSE IF (incx.NE.1) THEN
261  kx = 1
262  END IF
263 *
264 * Start the operations. In this version the elements of A are
265 * accessed sequentially with one pass through A.
266 *
267  IF (lsame(trans,'N')) THEN
268 *
269 * Form x := A*x.
270 *
271  IF (lsame(uplo,'U')) THEN
272  kplus1 = k + 1
273  IF (incx.EQ.1) THEN
274  DO 20 j = 1,n
275  IF (x(j).NE.zero) THEN
276  temp = x(j)
277  l = kplus1 - j
278  DO 10 i = max(1,j-k),j - 1
279  x(i) = x(i) + temp*a(l+i,j)
280  10 CONTINUE
281  IF (nounit) x(j) = x(j)*a(kplus1,j)
282  END IF
283  20 CONTINUE
284  ELSE
285  jx = kx
286  DO 40 j = 1,n
287  IF (x(jx).NE.zero) THEN
288  temp = x(jx)
289  ix = kx
290  l = kplus1 - j
291  DO 30 i = max(1,j-k),j - 1
292  x(ix) = x(ix) + temp*a(l+i,j)
293  ix = ix + incx
294  30 CONTINUE
295  IF (nounit) x(jx) = x(jx)*a(kplus1,j)
296  END IF
297  jx = jx + incx
298  IF (j.GT.k) kx = kx + incx
299  40 CONTINUE
300  END IF
301  ELSE
302  IF (incx.EQ.1) THEN
303  DO 60 j = n,1,-1
304  IF (x(j).NE.zero) THEN
305  temp = x(j)
306  l = 1 - j
307  DO 50 i = min(n,j+k),j + 1,-1
308  x(i) = x(i) + temp*a(l+i,j)
309  50 CONTINUE
310  IF (nounit) x(j) = x(j)*a(1,j)
311  END IF
312  60 CONTINUE
313  ELSE
314  kx = kx + (n-1)*incx
315  jx = kx
316  DO 80 j = n,1,-1
317  IF (x(jx).NE.zero) THEN
318  temp = x(jx)
319  ix = kx
320  l = 1 - j
321  DO 70 i = min(n,j+k),j + 1,-1
322  x(ix) = x(ix) + temp*a(l+i,j)
323  ix = ix - incx
324  70 CONTINUE
325  IF (nounit) x(jx) = x(jx)*a(1,j)
326  END IF
327  jx = jx - incx
328  IF ((n-j).GE.k) kx = kx - incx
329  80 CONTINUE
330  END IF
331  END IF
332  ELSE
333 *
334 * Form x := A**T*x or x := A**H*x.
335 *
336  IF (lsame(uplo,'U')) THEN
337  kplus1 = k + 1
338  IF (incx.EQ.1) THEN
339  DO 110 j = n,1,-1
340  temp = x(j)
341  l = kplus1 - j
342  IF (noconj) THEN
343  IF (nounit) temp = temp*a(kplus1,j)
344  DO 90 i = j - 1,max(1,j-k),-1
345  temp = temp + a(l+i,j)*x(i)
346  90 CONTINUE
347  ELSE
348  IF (nounit) temp = temp*dconjg(a(kplus1,j))
349  DO 100 i = j - 1,max(1,j-k),-1
350  temp = temp + dconjg(a(l+i,j))*x(i)
351  100 CONTINUE
352  END IF
353  x(j) = temp
354  110 CONTINUE
355  ELSE
356  kx = kx + (n-1)*incx
357  jx = kx
358  DO 140 j = n,1,-1
359  temp = x(jx)
360  kx = kx - incx
361  ix = kx
362  l = kplus1 - j
363  IF (noconj) THEN
364  IF (nounit) temp = temp*a(kplus1,j)
365  DO 120 i = j - 1,max(1,j-k),-1
366  temp = temp + a(l+i,j)*x(ix)
367  ix = ix - incx
368  120 CONTINUE
369  ELSE
370  IF (nounit) temp = temp*dconjg(a(kplus1,j))
371  DO 130 i = j - 1,max(1,j-k),-1
372  temp = temp + dconjg(a(l+i,j))*x(ix)
373  ix = ix - incx
374  130 CONTINUE
375  END IF
376  x(jx) = temp
377  jx = jx - incx
378  140 CONTINUE
379  END IF
380  ELSE
381  IF (incx.EQ.1) THEN
382  DO 170 j = 1,n
383  temp = x(j)
384  l = 1 - j
385  IF (noconj) THEN
386  IF (nounit) temp = temp*a(1,j)
387  DO 150 i = j + 1,min(n,j+k)
388  temp = temp + a(l+i,j)*x(i)
389  150 CONTINUE
390  ELSE
391  IF (nounit) temp = temp*dconjg(a(1,j))
392  DO 160 i = j + 1,min(n,j+k)
393  temp = temp + dconjg(a(l+i,j))*x(i)
394  160 CONTINUE
395  END IF
396  x(j) = temp
397  170 CONTINUE
398  ELSE
399  jx = kx
400  DO 200 j = 1,n
401  temp = x(jx)
402  kx = kx + incx
403  ix = kx
404  l = 1 - j
405  IF (noconj) THEN
406  IF (nounit) temp = temp*a(1,j)
407  DO 180 i = j + 1,min(n,j+k)
408  temp = temp + a(l+i,j)*x(ix)
409  ix = ix + incx
410  180 CONTINUE
411  ELSE
412  IF (nounit) temp = temp*dconjg(a(1,j))
413  DO 190 i = j + 1,min(n,j+k)
414  temp = temp + dconjg(a(l+i,j))*x(ix)
415  ix = ix + incx
416  190 CONTINUE
417  END IF
418  x(jx) = temp
419  jx = jx + incx
420  200 CONTINUE
421  END IF
422  END IF
423  END IF
424 *
425  RETURN
426 *
427 * End of ZTBMV .
428 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: