LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
 subroutine clarzb ( character SIDE, character TRANS, character DIRECT, character STOREV, integer M, integer N, integer K, integer L, complex, dimension( ldv, * ) V, integer LDV, complex, dimension( ldt, * ) T, integer LDT, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( ldwork, * ) WORK, integer LDWORK )

CLARZB applies a block reflector or its conjugate-transpose to a general matrix.

Purpose:
``` CLARZB applies a complex block reflector H or its transpose H**H
to a complex distributed M-by-N  C from the left or the right.

Currently, only STOREV = 'R' and DIRECT = 'B' are supported.```
Parameters
 [in] SIDE ``` SIDE is CHARACTER*1 = 'L': apply H or H**H from the Left = 'R': apply H or H**H from the Right``` [in] TRANS ``` TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'C': apply H**H (Conjugate transpose)``` [in] DIRECT ``` DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet) = 'B': H = H(k) . . . H(2) H(1) (Backward)``` [in] STOREV ``` STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columnwise (not supported yet) = 'R': Rowwise``` [in] M ``` M is INTEGER The number of rows of the matrix C.``` [in] N ``` N is INTEGER The number of columns of the matrix C.``` [in] K ``` K is INTEGER The order of the matrix T (= the number of elementary reflectors whose product defines the block reflector).``` [in] L ``` L is INTEGER The number of columns of the matrix V containing the meaningful part of the Householder reflectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.``` [in] V ``` V is COMPLEX array, dimension (LDV,NV). If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.``` [in] LDV ``` LDV is INTEGER The leading dimension of the array V. If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.``` [in] T ``` T is COMPLEX array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector.``` [in] LDT ``` LDT is INTEGER The leading dimension of the array T. LDT >= K.``` [in,out] C ``` C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.``` [in] LDC ``` LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).``` [out] WORK ` WORK is COMPLEX array, dimension (LDWORK,K)` [in] LDWORK ``` LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M).```
Date
September 2012
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
` `

Definition at line 185 of file clarzb.f.

185 *
186 * -- LAPACK computational routine (version 3.4.2) --
187 * -- LAPACK is a software package provided by Univ. of Tennessee, --
188 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
189 * September 2012
190 *
191 * .. Scalar Arguments ..
192  CHARACTER direct, side, storev, trans
193  INTEGER k, l, ldc, ldt, ldv, ldwork, m, n
194 * ..
195 * .. Array Arguments ..
196  COMPLEX c( ldc, * ), t( ldt, * ), v( ldv, * ),
197  \$ work( ldwork, * )
198 * ..
199 *
200 * =====================================================================
201 *
202 * .. Parameters ..
203  COMPLEX one
204  parameter ( one = ( 1.0e+0, 0.0e+0 ) )
205 * ..
206 * .. Local Scalars ..
207  CHARACTER transt
208  INTEGER i, info, j
209 * ..
210 * .. External Functions ..
211  LOGICAL lsame
212  EXTERNAL lsame
213 * ..
214 * .. External Subroutines ..
215  EXTERNAL ccopy, cgemm, clacgv, ctrmm, xerbla
216 * ..
217 * .. Executable Statements ..
218 *
219 * Quick return if possible
220 *
221  IF( m.LE.0 .OR. n.LE.0 )
222  \$ RETURN
223 *
224 * Check for currently supported options
225 *
226  info = 0
227  IF( .NOT.lsame( direct, 'B' ) ) THEN
228  info = -3
229  ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
230  info = -4
231  END IF
232  IF( info.NE.0 ) THEN
233  CALL xerbla( 'CLARZB', -info )
234  RETURN
235  END IF
236 *
237  IF( lsame( trans, 'N' ) ) THEN
238  transt = 'C'
239  ELSE
240  transt = 'N'
241  END IF
242 *
243  IF( lsame( side, 'L' ) ) THEN
244 *
245 * Form H * C or H**H * C
246 *
247 * W( 1:n, 1:k ) = C( 1:k, 1:n )**H
248 *
249  DO 10 j = 1, k
250  CALL ccopy( n, c( j, 1 ), ldc, work( 1, j ), 1 )
251  10 CONTINUE
252 *
253 * W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
254 * C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
255 *
256  IF( l.GT.0 )
257  \$ CALL cgemm( 'Transpose', 'Conjugate transpose', n, k, l,
258  \$ one, c( m-l+1, 1 ), ldc, v, ldv, one, work,
259  \$ ldwork )
260 *
261 * W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
262 *
263  CALL ctrmm( 'Right', 'Lower', transt, 'Non-unit', n, k, one, t,
264  \$ ldt, work, ldwork )
265 *
266 * C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
267 *
268  DO 30 j = 1, n
269  DO 20 i = 1, k
270  c( i, j ) = c( i, j ) - work( j, i )
271  20 CONTINUE
272  30 CONTINUE
273 *
274 * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
275 * V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
276 *
277  IF( l.GT.0 )
278  \$ CALL cgemm( 'Transpose', 'Transpose', l, n, k, -one, v, ldv,
279  \$ work, ldwork, one, c( m-l+1, 1 ), ldc )
280 *
281  ELSE IF( lsame( side, 'R' ) ) THEN
282 *
283 * Form C * H or C * H**H
284 *
285 * W( 1:m, 1:k ) = C( 1:m, 1:k )
286 *
287  DO 40 j = 1, k
288  CALL ccopy( m, c( 1, j ), 1, work( 1, j ), 1 )
289  40 CONTINUE
290 *
291 * W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
292 * C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
293 *
294  IF( l.GT.0 )
295  \$ CALL cgemm( 'No transpose', 'Transpose', m, k, l, one,
296  \$ c( 1, n-l+1 ), ldc, v, ldv, one, work, ldwork )
297 *
298 * W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
299 * W( 1:m, 1:k ) * T**H
300 *
301  DO 50 j = 1, k
302  CALL clacgv( k-j+1, t( j, j ), 1 )
303  50 CONTINUE
304  CALL ctrmm( 'Right', 'Lower', trans, 'Non-unit', m, k, one, t,
305  \$ ldt, work, ldwork )
306  DO 60 j = 1, k
307  CALL clacgv( k-j+1, t( j, j ), 1 )
308  60 CONTINUE
309 *
310 * C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
311 *
312  DO 80 j = 1, k
313  DO 70 i = 1, m
314  c( i, j ) = c( i, j ) - work( i, j )
315  70 CONTINUE
316  80 CONTINUE
317 *
318 * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
319 * W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
320 *
321  DO 90 j = 1, l
322  CALL clacgv( k, v( 1, j ), 1 )
323  90 CONTINUE
324  IF( l.GT.0 )
325  \$ CALL cgemm( 'No transpose', 'No transpose', m, l, k, -one,
326  \$ work, ldwork, v, ldv, one, c( 1, n-l+1 ), ldc )
327  DO 100 j = 1, l
328  CALL clacgv( k, v( 1, j ), 1 )
329  100 CONTINUE
330 *
331  END IF
332 *
333  RETURN
334 *
335 * End of CLARZB
336 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:52
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76
subroutine ctrmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRMM
Definition: ctrmm.f:179
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: