LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zrot ( integer  N,
complex*16, dimension( * )  CX,
integer  INCX,
complex*16, dimension( * )  CY,
integer  INCY,
double precision  C,
complex*16  S 
)

ZROT applies a plane rotation with real cosine and complex sine to a pair of complex vectors.

Download ZROT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZROT   applies a plane rotation, where the cos (C) is real and the
 sin (S) is complex, and the vectors CX and CY are complex.
Parameters
[in]N
          N is INTEGER
          The number of elements in the vectors CX and CY.
[in,out]CX
          CX is COMPLEX*16 array, dimension (N)
          On input, the vector X.
          On output, CX is overwritten with C*X + S*Y.
[in]INCX
          INCX is INTEGER
          The increment between successive values of CY.  INCX <> 0.
[in,out]CY
          CY is COMPLEX*16 array, dimension (N)
          On input, the vector Y.
          On output, CY is overwritten with -CONJG(S)*X + C*Y.
[in]INCY
          INCY is INTEGER
          The increment between successive values of CY.  INCX <> 0.
[in]C
          C is DOUBLE PRECISION
[in]S
          S is COMPLEX*16
          C and S define a rotation
             [  C          S  ]
             [ -conjg(S)   C  ]
          where C*C + S*CONJG(S) = 1.0.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 105 of file zrot.f.

105 *
106 * -- LAPACK auxiliary routine (version 3.4.2) --
107 * -- LAPACK is a software package provided by Univ. of Tennessee, --
108 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
109 * September 2012
110 *
111 * .. Scalar Arguments ..
112  INTEGER incx, incy, n
113  DOUBLE PRECISION c
114  COMPLEX*16 s
115 * ..
116 * .. Array Arguments ..
117  COMPLEX*16 cx( * ), cy( * )
118 * ..
119 *
120 * =====================================================================
121 *
122 * .. Local Scalars ..
123  INTEGER i, ix, iy
124  COMPLEX*16 stemp
125 * ..
126 * .. Intrinsic Functions ..
127  INTRINSIC dconjg
128 * ..
129 * .. Executable Statements ..
130 *
131  IF( n.LE.0 )
132  $ RETURN
133  IF( incx.EQ.1 .AND. incy.EQ.1 )
134  $ GO TO 20
135 *
136 * Code for unequal increments or equal increments not equal to 1
137 *
138  ix = 1
139  iy = 1
140  IF( incx.LT.0 )
141  $ ix = ( -n+1 )*incx + 1
142  IF( incy.LT.0 )
143  $ iy = ( -n+1 )*incy + 1
144  DO 10 i = 1, n
145  stemp = c*cx( ix ) + s*cy( iy )
146  cy( iy ) = c*cy( iy ) - dconjg( s )*cx( ix )
147  cx( ix ) = stemp
148  ix = ix + incx
149  iy = iy + incy
150  10 CONTINUE
151  RETURN
152 *
153 * Code for both increments equal to 1
154 *
155  20 CONTINUE
156  DO 30 i = 1, n
157  stemp = c*cx( i ) + s*cy( i )
158  cy( i ) = c*cy( i ) - dconjg( s )*cx( i )
159  cx( i ) = stemp
160  30 CONTINUE
161  RETURN

Here is the caller graph for this function: