2840 parameter ( zero = 0.0, one = 1.0 )
2842 REAL alpha, beta, eps, err
2843 INTEGER incx, incy, m, n, nmax, nout
2847 REAL a( nmax, * ), g( * ), x( * ), y( * ), yt( * ),
2851 INTEGER i, incxl, incyl, iy, j, jx, kx, ky, ml, nl
2854 INTRINSIC abs, max, sqrt
2856 tran = trans.EQ.
'T'.OR.trans.EQ.
'C'
2889 yt( iy ) = yt( iy ) + a( j, i )*x( jx )
2890 g( iy ) = g( iy ) + abs( a( j, i )*x( jx ) )
2895 yt( iy ) = yt( iy ) + a( i, j )*x( jx )
2896 g( iy ) = g( iy ) + abs( a( i, j )*x( jx ) )
2900 yt( iy ) = alpha*yt( iy ) + beta*y( iy )
2901 g( iy ) = abs( alpha )*g( iy ) + abs( beta*y( iy ) )
2909 erri = abs( yt( i ) - yy( 1 + ( i - 1 )*abs( incy ) ) )/eps
2910 IF( g( i ).NE.zero )
2911 $ erri = erri/g( i )
2912 err = max( err, erri )
2913 IF( err*sqrt( eps ).GE.one )
2922 WRITE( nout, fmt = 9999 )
2925 WRITE( nout, fmt = 9998 )i, yt( i ),
2926 $ yy( 1 + ( i - 1 )*abs( incy ) )
2928 WRITE( nout, fmt = 9998 )i,
2929 $ yy( 1 + ( i - 1 )*abs( incy ) ), yt(i)
2936 9999
FORMAT(
' ******* FATAL ERROR - COMPUTED RESULT IS LESS THAN HAL',
2937 $
'F ACCURATE *******', /
' EXPECTED RESULT COMPU',
2939 9998
FORMAT( 1x, i7, 2g18.6 )