169 INTEGER info, ka, kb, ldab, ldbb, ldx, n
172 REAL ab( ldab, * ), bb( ldbb, * ), work( * ),
180 parameter ( zero = 0.0e+0, one = 1.0e+0 )
183 LOGICAL update, upper, wantx
184 INTEGER i, i0, i1, i2, inca, j, j1, j1t, j2, j2t, k,
185 $ ka1, kb1, kbt, l, m, nr, nrt, nx
203 wantx =
lsame( vect,
'V' )
204 upper =
lsame( uplo,
'U' )
208 IF( .NOT.wantx .AND. .NOT.
lsame( vect,
'N' ) )
THEN
210 ELSE IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
212 ELSE IF( n.LT.0 )
THEN
214 ELSE IF( ka.LT.0 )
THEN
216 ELSE IF( kb.LT.0 .OR. kb.GT.ka )
THEN
218 ELSE IF( ldab.LT.ka+1 )
THEN
220 ELSE IF( ldbb.LT.kb+1 )
THEN
222 ELSE IF( ldx.LT.1 .OR. wantx .AND. ldx.LT.max( 1, n ) )
THEN
226 CALL xerbla(
'SSBGST', -info )
240 $
CALL slaset(
'Full', n, n, zero, one, x, ldx )
342 ab( i-j+ka1, j ) = ab( i-j+ka1, j ) / bii
344 DO 30 j = max( 1, i-ka ), i
345 ab( j-i+ka1, i ) = ab( j-i+ka1, i ) / bii
347 DO 60 k = i - kbt, i - 1
349 ab( j-k+ka1, k ) = ab( j-k+ka1, k ) -
350 $ bb( j-i+kb1, i )*ab( k-i+ka1, i ) -
351 $ bb( k-i+kb1, i )*ab( j-i+ka1, i ) +
352 $ ab( ka1, i )*bb( j-i+kb1, i )*
355 DO 50 j = max( 1, i-ka ), i - kbt - 1
356 ab( j-k+ka1, k ) = ab( j-k+ka1, k ) -
357 $ bb( k-i+kb1, i )*ab( j-i+ka1, i )
361 DO 70 k = max( j-ka, i-kbt ), i - 1
362 ab( k-j+ka1, j ) = ab( k-j+ka1, j ) -
363 $ bb( k-i+kb1, i )*ab( i-j+ka1, j )
371 CALL sscal( n-m, one / bii, x( m+1, i ), 1 )
373 $
CALL sger( n-m, kbt, -one, x( m+1, i ), 1,
374 $ bb( kb1-kbt, i ), 1, x( m+1, i-kbt ), ldx )
379 ra1 = ab( i-i1+ka1, i1 )
392 IF( i-k+ka.LT.n .AND. i-k.GT.1 )
THEN
396 CALL slartg( ab( k+1, i-k+ka ), ra1,
397 $ work( n+i-k+ka-m ), work( i-k+ka-m ),
403 t = -bb( kb1-k, i )*ra1
404 work( i-k ) = work( n+i-k+ka-m )*t -
405 $ work( i-k+ka-m )*ab( 1, i-k+ka )
406 ab( 1, i-k+ka ) = work( i-k+ka-m )*t +
407 $ work( n+i-k+ka-m )*ab( 1, i-k+ka )
411 j2 = i - k - 1 + max( 1, k-i0+2 )*ka1
412 nr = ( n-j2+ka ) / ka1
413 j1 = j2 + ( nr-1 )*ka1
415 j2t = max( j2, i+2*ka-k+1 )
419 nrt = ( n-j2t+ka ) / ka1
420 DO 90 j = j2t, j1, ka1
425 work( j-m ) = work( j-m )*ab( 1, j+1 )
426 ab( 1, j+1 ) = work( n+j-m )*ab( 1, j+1 )
433 $
CALL slargv( nrt, ab( 1, j2t ), inca, work( j2t-m ), ka1,
434 $ work( n+j2t-m ), ka1 )
440 CALL slartv( nr, ab( ka1-l, j2 ), inca,
441 $ ab( ka-l, j2+1 ), inca, work( n+j2-m ),
442 $ work( j2-m ), ka1 )
448 CALL slar2v( nr, ab( ka1, j2 ), ab( ka1, j2+1 ),
449 $ ab( ka, j2+1 ), inca, work( n+j2-m ),
450 $ work( j2-m ), ka1 )
456 DO 110 l = ka - 1, kb - k + 1, -1
457 nrt = ( n-j2+l ) / ka1
459 $
CALL slartv( nrt, ab( l, j2+ka1-l ), inca,
460 $ ab( l+1, j2+ka1-l ), inca,
461 $ work( n+j2-m ), work( j2-m ), ka1 )
468 DO 120 j = j2, j1, ka1
469 CALL srot( n-m, x( m+1, j ), 1, x( m+1, j+1 ), 1,
470 $ work( n+j-m ), work( j-m ) )
476 IF( i2.LE.n .AND. kbt.GT.0 )
THEN
481 work( i-kbt ) = -bb( kb1-kbt, i )*ra1
487 j2 = i - k - 1 + max( 2, k-i0+1 )*ka1
489 j2 = i - k - 1 + max( 1, k-i0+1 )*ka1
494 DO 140 l = kb - k, 1, -1
495 nrt = ( n-j2+ka+l ) / ka1
497 $
CALL slartv( nrt, ab( l, j2-l+1 ), inca,
498 $ ab( l+1, j2-l+1 ), inca, work( n+j2-ka ),
499 $ work( j2-ka ), ka1 )
501 nr = ( n-j2+ka ) / ka1
502 j1 = j2 + ( nr-1 )*ka1
503 DO 150 j = j1, j2, -ka1
504 work( j ) = work( j-ka )
505 work( n+j ) = work( n+j-ka )
507 DO 160 j = j2, j1, ka1
512 work( j ) = work( j )*ab( 1, j+1 )
513 ab( 1, j+1 ) = work( n+j )*ab( 1, j+1 )
516 IF( i-k.LT.n-ka .AND. k.LE.kbt )
517 $ work( i-k+ka ) = work( i-k )
522 j2 = i - k - 1 + max( 1, k-i0+1 )*ka1
523 nr = ( n-j2+ka ) / ka1
524 j1 = j2 + ( nr-1 )*ka1
530 CALL slargv( nr, ab( 1, j2 ), inca, work( j2 ), ka1,
531 $ work( n+j2 ), ka1 )
536 CALL slartv( nr, ab( ka1-l, j2 ), inca,
537 $ ab( ka-l, j2+1 ), inca, work( n+j2 ),
544 CALL slar2v( nr, ab( ka1, j2 ), ab( ka1, j2+1 ),
545 $ ab( ka, j2+1 ), inca, work( n+j2 ),
552 DO 190 l = ka - 1, kb - k + 1, -1
553 nrt = ( n-j2+l ) / ka1
555 $
CALL slartv( nrt, ab( l, j2+ka1-l ), inca,
556 $ ab( l+1, j2+ka1-l ), inca, work( n+j2 ),
564 DO 200 j = j2, j1, ka1
565 CALL srot( n-m, x( m+1, j ), 1, x( m+1, j+1 ), 1,
566 $ work( n+j ), work( j ) )
572 j2 = i - k - 1 + max( 1, k-i0+2 )*ka1
576 DO 220 l = kb - k, 1, -1
577 nrt = ( n-j2+l ) / ka1
579 $
CALL slartv( nrt, ab( l, j2+ka1-l ), inca,
580 $ ab( l+1, j2+ka1-l ), inca,
581 $ work( n+j2-m ), work( j2-m ), ka1 )
586 DO 240 j = n - 1, i - kb + 2*ka + 1, -1
587 work( n+j-m ) = work( n+j-ka-m )
588 work( j-m ) = work( j-ka-m )
602 ab( j-i+1, i ) = ab( j-i+1, i ) / bii
604 DO 260 j = max( 1, i-ka ), i
605 ab( i-j+1, j ) = ab( i-j+1, j ) / bii
607 DO 290 k = i - kbt, i - 1
608 DO 270 j = i - kbt, k
609 ab( k-j+1, j ) = ab( k-j+1, j ) -
610 $ bb( i-j+1, j )*ab( i-k+1, k ) -
611 $ bb( i-k+1, k )*ab( i-j+1, j ) +
612 $ ab( 1, i )*bb( i-j+1, j )*
615 DO 280 j = max( 1, i-ka ), i - kbt - 1
616 ab( k-j+1, j ) = ab( k-j+1, j ) -
617 $ bb( i-k+1, k )*ab( i-j+1, j )
621 DO 300 k = max( j-ka, i-kbt ), i - 1
622 ab( j-k+1, k ) = ab( j-k+1, k ) -
623 $ bb( i-k+1, k )*ab( j-i+1, i )
631 CALL sscal( n-m, one / bii, x( m+1, i ), 1 )
633 $
CALL sger( n-m, kbt, -one, x( m+1, i ), 1,
634 $ bb( kbt+1, i-kbt ), ldbb-1,
635 $ x( m+1, i-kbt ), ldx )
640 ra1 = ab( i1-i+1, i )
653 IF( i-k+ka.LT.n .AND. i-k.GT.1 )
THEN
657 CALL slartg( ab( ka1-k, i ), ra1, work( n+i-k+ka-m ),
658 $ work( i-k+ka-m ), ra )
663 t = -bb( k+1, i-k )*ra1
664 work( i-k ) = work( n+i-k+ka-m )*t -
665 $ work( i-k+ka-m )*ab( ka1, i-k )
666 ab( ka1, i-k ) = work( i-k+ka-m )*t +
667 $ work( n+i-k+ka-m )*ab( ka1, i-k )
671 j2 = i - k - 1 + max( 1, k-i0+2 )*ka1
672 nr = ( n-j2+ka ) / ka1
673 j1 = j2 + ( nr-1 )*ka1
675 j2t = max( j2, i+2*ka-k+1 )
679 nrt = ( n-j2t+ka ) / ka1
680 DO 320 j = j2t, j1, ka1
685 work( j-m ) = work( j-m )*ab( ka1, j-ka+1 )
686 ab( ka1, j-ka+1 ) = work( n+j-m )*ab( ka1, j-ka+1 )
693 $
CALL slargv( nrt, ab( ka1, j2t-ka ), inca, work( j2t-m ),
694 $ ka1, work( n+j2t-m ), ka1 )
700 CALL slartv( nr, ab( l+1, j2-l ), inca,
701 $ ab( l+2, j2-l ), inca, work( n+j2-m ),
702 $ work( j2-m ), ka1 )
708 CALL slar2v( nr, ab( 1, j2 ), ab( 1, j2+1 ), ab( 2, j2 ),
709 $ inca, work( n+j2-m ), work( j2-m ), ka1 )
715 DO 340 l = ka - 1, kb - k + 1, -1
716 nrt = ( n-j2+l ) / ka1
718 $
CALL slartv( nrt, ab( ka1-l+1, j2 ), inca,
719 $ ab( ka1-l, j2+1 ), inca, work( n+j2-m ),
720 $ work( j2-m ), ka1 )
727 DO 350 j = j2, j1, ka1
728 CALL srot( n-m, x( m+1, j ), 1, x( m+1, j+1 ), 1,
729 $ work( n+j-m ), work( j-m ) )
735 IF( i2.LE.n .AND. kbt.GT.0 )
THEN
740 work( i-kbt ) = -bb( kbt+1, i-kbt )*ra1
746 j2 = i - k - 1 + max( 2, k-i0+1 )*ka1
748 j2 = i - k - 1 + max( 1, k-i0+1 )*ka1
753 DO 370 l = kb - k, 1, -1
754 nrt = ( n-j2+ka+l ) / ka1
756 $
CALL slartv( nrt, ab( ka1-l+1, j2-ka ), inca,
757 $ ab( ka1-l, j2-ka+1 ), inca,
758 $ work( n+j2-ka ), work( j2-ka ), ka1 )
760 nr = ( n-j2+ka ) / ka1
761 j1 = j2 + ( nr-1 )*ka1
762 DO 380 j = j1, j2, -ka1
763 work( j ) = work( j-ka )
764 work( n+j ) = work( n+j-ka )
766 DO 390 j = j2, j1, ka1
771 work( j ) = work( j )*ab( ka1, j-ka+1 )
772 ab( ka1, j-ka+1 ) = work( n+j )*ab( ka1, j-ka+1 )
775 IF( i-k.LT.n-ka .AND. k.LE.kbt )
776 $ work( i-k+ka ) = work( i-k )
781 j2 = i - k - 1 + max( 1, k-i0+1 )*ka1
782 nr = ( n-j2+ka ) / ka1
783 j1 = j2 + ( nr-1 )*ka1
789 CALL slargv( nr, ab( ka1, j2-ka ), inca, work( j2 ), ka1,
790 $ work( n+j2 ), ka1 )
795 CALL slartv( nr, ab( l+1, j2-l ), inca,
796 $ ab( l+2, j2-l ), inca, work( n+j2 ),
803 CALL slar2v( nr, ab( 1, j2 ), ab( 1, j2+1 ), ab( 2, j2 ),
804 $ inca, work( n+j2 ), work( j2 ), ka1 )
810 DO 420 l = ka - 1, kb - k + 1, -1
811 nrt = ( n-j2+l ) / ka1
813 $
CALL slartv( nrt, ab( ka1-l+1, j2 ), inca,
814 $ ab( ka1-l, j2+1 ), inca, work( n+j2 ),
822 DO 430 j = j2, j1, ka1
823 CALL srot( n-m, x( m+1, j ), 1, x( m+1, j+1 ), 1,
824 $ work( n+j ), work( j ) )
830 j2 = i - k - 1 + max( 1, k-i0+2 )*ka1
834 DO 450 l = kb - k, 1, -1
835 nrt = ( n-j2+l ) / ka1
837 $
CALL slartv( nrt, ab( ka1-l+1, j2 ), inca,
838 $ ab( ka1-l, j2+1 ), inca, work( n+j2-m ),
839 $ work( j2-m ), ka1 )
844 DO 470 j = n - 1, i - kb + 2*ka + 1, -1
845 work( n+j-m ) = work( n+j-ka-m )
846 work( j-m ) = work( j-ka-m )
895 IF( i.LT.m-kbt )
THEN
911 ab( j-i+ka1, i ) = ab( j-i+ka1, i ) / bii
913 DO 510 j = i, min( n, i+ka )
914 ab( i-j+ka1, j ) = ab( i-j+ka1, j ) / bii
916 DO 540 k = i + 1, i + kbt
917 DO 520 j = k, i + kbt
918 ab( k-j+ka1, j ) = ab( k-j+ka1, j ) -
919 $ bb( i-j+kb1, j )*ab( i-k+ka1, k ) -
920 $ bb( i-k+kb1, k )*ab( i-j+ka1, j ) +
921 $ ab( ka1, i )*bb( i-j+kb1, j )*
924 DO 530 j = i + kbt + 1, min( n, i+ka )
925 ab( k-j+ka1, j ) = ab( k-j+ka1, j ) -
926 $ bb( i-k+kb1, k )*ab( i-j+ka1, j )
930 DO 550 k = i + 1, min( j+ka, i+kbt )
931 ab( j-k+ka1, k ) = ab( j-k+ka1, k ) -
932 $ bb( i-k+kb1, k )*ab( j-i+ka1, i )
940 CALL sscal( nx, one / bii, x( 1, i ), 1 )
942 $
CALL sger( nx, kbt, -one, x( 1, i ), 1, bb( kb, i+1 ),
943 $ ldbb-1, x( 1, i+1 ), ldx )
948 ra1 = ab( i1-i+ka1, i )
960 IF( i+k-ka1.GT.0 .AND. i+k.LT.m )
THEN
964 CALL slartg( ab( k+1, i ), ra1, work( n+i+k-ka ),
965 $ work( i+k-ka ), ra )
970 t = -bb( kb1-k, i+k )*ra1
971 work( m-kb+i+k ) = work( n+i+k-ka )*t -
972 $ work( i+k-ka )*ab( 1, i+k )
973 ab( 1, i+k ) = work( i+k-ka )*t +
974 $ work( n+i+k-ka )*ab( 1, i+k )
978 j2 = i + k + 1 - max( 1, k+i0-m+1 )*ka1
979 nr = ( j2+ka-1 ) / ka1
980 j1 = j2 - ( nr-1 )*ka1
982 j2t = min( j2, i-2*ka+k-1 )
986 nrt = ( j2t+ka-1 ) / ka1
987 DO 570 j = j1, j2t, ka1
992 work( j ) = work( j )*ab( 1, j+ka-1 )
993 ab( 1, j+ka-1 ) = work( n+j )*ab( 1, j+ka-1 )
1000 $
CALL slargv( nrt, ab( 1, j1+ka ), inca, work( j1 ), ka1,
1001 $ work( n+j1 ), ka1 )
1006 DO 580 l = 1, ka - 1
1007 CALL slartv( nr, ab( ka1-l, j1+l ), inca,
1008 $ ab( ka-l, j1+l ), inca, work( n+j1 ),
1015 CALL slar2v( nr, ab( ka1, j1 ), ab( ka1, j1-1 ),
1016 $ ab( ka, j1 ), inca, work( n+j1 ),
1023 DO 590 l = ka - 1, kb - k + 1, -1
1024 nrt = ( j2+l-1 ) / ka1
1025 j1t = j2 - ( nrt-1 )*ka1
1027 $
CALL slartv( nrt, ab( l, j1t ), inca,
1028 $ ab( l+1, j1t-1 ), inca, work( n+j1t ),
1029 $ work( j1t ), ka1 )
1036 DO 600 j = j1, j2, ka1
1037 CALL srot( nx, x( 1, j ), 1, x( 1, j-1 ), 1,
1038 $ work( n+j ), work( j ) )
1044 IF( i2.GT.0 .AND. kbt.GT.0 )
THEN
1049 work( m-kb+i+kbt ) = -bb( kb1-kbt, i+kbt )*ra1
1053 DO 650 k = kb, 1, -1
1055 j2 = i + k + 1 - max( 2, k+i0-m )*ka1
1057 j2 = i + k + 1 - max( 1, k+i0-m )*ka1
1062 DO 620 l = kb - k, 1, -1
1063 nrt = ( j2+ka+l-1 ) / ka1
1064 j1t = j2 - ( nrt-1 )*ka1
1066 $
CALL slartv( nrt, ab( l, j1t+ka ), inca,
1067 $ ab( l+1, j1t+ka-1 ), inca,
1068 $ work( n+m-kb+j1t+ka ),
1069 $ work( m-kb+j1t+ka ), ka1 )
1071 nr = ( j2+ka-1 ) / ka1
1072 j1 = j2 - ( nr-1 )*ka1
1073 DO 630 j = j1, j2, ka1
1074 work( m-kb+j ) = work( m-kb+j+ka )
1075 work( n+m-kb+j ) = work( n+m-kb+j+ka )
1077 DO 640 j = j1, j2, ka1
1082 work( m-kb+j ) = work( m-kb+j )*ab( 1, j+ka-1 )
1083 ab( 1, j+ka-1 ) = work( n+m-kb+j )*ab( 1, j+ka-1 )
1086 IF( i+k.GT.ka1 .AND. k.LE.kbt )
1087 $ work( m-kb+i+k-ka ) = work( m-kb+i+k )
1091 DO 690 k = kb, 1, -1
1092 j2 = i + k + 1 - max( 1, k+i0-m )*ka1
1093 nr = ( j2+ka-1 ) / ka1
1094 j1 = j2 - ( nr-1 )*ka1
1100 CALL slargv( nr, ab( 1, j1+ka ), inca, work( m-kb+j1 ),
1101 $ ka1, work( n+m-kb+j1 ), ka1 )
1105 DO 660 l = 1, ka - 1
1106 CALL slartv( nr, ab( ka1-l, j1+l ), inca,
1107 $ ab( ka-l, j1+l ), inca,
1108 $ work( n+m-kb+j1 ), work( m-kb+j1 ), ka1 )
1114 CALL slar2v( nr, ab( ka1, j1 ), ab( ka1, j1-1 ),
1115 $ ab( ka, j1 ), inca, work( n+m-kb+j1 ),
1116 $ work( m-kb+j1 ), ka1 )
1122 DO 670 l = ka - 1, kb - k + 1, -1
1123 nrt = ( j2+l-1 ) / ka1
1124 j1t = j2 - ( nrt-1 )*ka1
1126 $
CALL slartv( nrt, ab( l, j1t ), inca,
1127 $ ab( l+1, j1t-1 ), inca,
1128 $ work( n+m-kb+j1t ), work( m-kb+j1t ),
1136 DO 680 j = j1, j2, ka1
1137 CALL srot( nx, x( 1, j ), 1, x( 1, j-1 ), 1,
1138 $ work( n+m-kb+j ), work( m-kb+j ) )
1143 DO 710 k = 1, kb - 1
1144 j2 = i + k + 1 - max( 1, k+i0-m+1 )*ka1
1148 DO 700 l = kb - k, 1, -1
1149 nrt = ( j2+l-1 ) / ka1
1150 j1t = j2 - ( nrt-1 )*ka1
1152 $
CALL slartv( nrt, ab( l, j1t ), inca,
1153 $ ab( l+1, j1t-1 ), inca, work( n+j1t ),
1154 $ work( j1t ), ka1 )
1159 DO 720 j = 2, min( i+kb, m ) - 2*ka - 1
1160 work( n+j ) = work( n+j+ka )
1161 work( j ) = work( j+ka )
1175 ab( i-j+1, j ) = ab( i-j+1, j ) / bii
1177 DO 740 j = i, min( n, i+ka )
1178 ab( j-i+1, i ) = ab( j-i+1, i ) / bii
1180 DO 770 k = i + 1, i + kbt
1181 DO 750 j = k, i + kbt
1182 ab( j-k+1, k ) = ab( j-k+1, k ) -
1183 $ bb( j-i+1, i )*ab( k-i+1, i ) -
1184 $ bb( k-i+1, i )*ab( j-i+1, i ) +
1185 $ ab( 1, i )*bb( j-i+1, i )*
1188 DO 760 j = i + kbt + 1, min( n, i+ka )
1189 ab( j-k+1, k ) = ab( j-k+1, k ) -
1190 $ bb( k-i+1, i )*ab( j-i+1, i )
1194 DO 780 k = i + 1, min( j+ka, i+kbt )
1195 ab( k-j+1, j ) = ab( k-j+1, j ) -
1196 $ bb( k-i+1, i )*ab( i-j+1, j )
1204 CALL sscal( nx, one / bii, x( 1, i ), 1 )
1206 $
CALL sger( nx, kbt, -one, x( 1, i ), 1, bb( 2, i ), 1,
1207 $ x( 1, i+1 ), ldx )
1212 ra1 = ab( i-i1+1, i1 )
1218 DO 840 k = 1, kb - 1
1224 IF( i+k-ka1.GT.0 .AND. i+k.LT.m )
THEN
1228 CALL slartg( ab( ka1-k, i+k-ka ), ra1,
1229 $ work( n+i+k-ka ), work( i+k-ka ), ra )
1234 t = -bb( k+1, i )*ra1
1235 work( m-kb+i+k ) = work( n+i+k-ka )*t -
1236 $ work( i+k-ka )*ab( ka1, i+k-ka )
1237 ab( ka1, i+k-ka ) = work( i+k-ka )*t +
1238 $ work( n+i+k-ka )*ab( ka1, i+k-ka )
1242 j2 = i + k + 1 - max( 1, k+i0-m+1 )*ka1
1243 nr = ( j2+ka-1 ) / ka1
1244 j1 = j2 - ( nr-1 )*ka1
1246 j2t = min( j2, i-2*ka+k-1 )
1250 nrt = ( j2t+ka-1 ) / ka1
1251 DO 800 j = j1, j2t, ka1
1256 work( j ) = work( j )*ab( ka1, j-1 )
1257 ab( ka1, j-1 ) = work( n+j )*ab( ka1, j-1 )
1264 $
CALL slargv( nrt, ab( ka1, j1 ), inca, work( j1 ), ka1,
1265 $ work( n+j1 ), ka1 )
1270 DO 810 l = 1, ka - 1
1271 CALL slartv( nr, ab( l+1, j1 ), inca, ab( l+2, j1-1 ),
1272 $ inca, work( n+j1 ), work( j1 ), ka1 )
1278 CALL slar2v( nr, ab( 1, j1 ), ab( 1, j1-1 ),
1279 $ ab( 2, j1-1 ), inca, work( n+j1 ),
1286 DO 820 l = ka - 1, kb - k + 1, -1
1287 nrt = ( j2+l-1 ) / ka1
1288 j1t = j2 - ( nrt-1 )*ka1
1290 $
CALL slartv( nrt, ab( ka1-l+1, j1t-ka1+l ), inca,
1291 $ ab( ka1-l, j1t-ka1+l ), inca,
1292 $ work( n+j1t ), work( j1t ), ka1 )
1299 DO 830 j = j1, j2, ka1
1300 CALL srot( nx, x( 1, j ), 1, x( 1, j-1 ), 1,
1301 $ work( n+j ), work( j ) )
1307 IF( i2.GT.0 .AND. kbt.GT.0 )
THEN
1312 work( m-kb+i+kbt ) = -bb( kbt+1, i )*ra1
1316 DO 880 k = kb, 1, -1
1318 j2 = i + k + 1 - max( 2, k+i0-m )*ka1
1320 j2 = i + k + 1 - max( 1, k+i0-m )*ka1
1325 DO 850 l = kb - k, 1, -1
1326 nrt = ( j2+ka+l-1 ) / ka1
1327 j1t = j2 - ( nrt-1 )*ka1
1329 $
CALL slartv( nrt, ab( ka1-l+1, j1t+l-1 ), inca,
1330 $ ab( ka1-l, j1t+l-1 ), inca,
1331 $ work( n+m-kb+j1t+ka ),
1332 $ work( m-kb+j1t+ka ), ka1 )
1334 nr = ( j2+ka-1 ) / ka1
1335 j1 = j2 - ( nr-1 )*ka1
1336 DO 860 j = j1, j2, ka1
1337 work( m-kb+j ) = work( m-kb+j+ka )
1338 work( n+m-kb+j ) = work( n+m-kb+j+ka )
1340 DO 870 j = j1, j2, ka1
1345 work( m-kb+j ) = work( m-kb+j )*ab( ka1, j-1 )
1346 ab( ka1, j-1 ) = work( n+m-kb+j )*ab( ka1, j-1 )
1349 IF( i+k.GT.ka1 .AND. k.LE.kbt )
1350 $ work( m-kb+i+k-ka ) = work( m-kb+i+k )
1354 DO 920 k = kb, 1, -1
1355 j2 = i + k + 1 - max( 1, k+i0-m )*ka1
1356 nr = ( j2+ka-1 ) / ka1
1357 j1 = j2 - ( nr-1 )*ka1
1363 CALL slargv( nr, ab( ka1, j1 ), inca, work( m-kb+j1 ),
1364 $ ka1, work( n+m-kb+j1 ), ka1 )
1368 DO 890 l = 1, ka - 1
1369 CALL slartv( nr, ab( l+1, j1 ), inca, ab( l+2, j1-1 ),
1370 $ inca, work( n+m-kb+j1 ), work( m-kb+j1 ),
1377 CALL slar2v( nr, ab( 1, j1 ), ab( 1, j1-1 ),
1378 $ ab( 2, j1-1 ), inca, work( n+m-kb+j1 ),
1379 $ work( m-kb+j1 ), ka1 )
1385 DO 900 l = ka - 1, kb - k + 1, -1
1386 nrt = ( j2+l-1 ) / ka1
1387 j1t = j2 - ( nrt-1 )*ka1
1389 $
CALL slartv( nrt, ab( ka1-l+1, j1t-ka1+l ), inca,
1390 $ ab( ka1-l, j1t-ka1+l ), inca,
1391 $ work( n+m-kb+j1t ), work( m-kb+j1t ),
1399 DO 910 j = j1, j2, ka1
1400 CALL srot( nx, x( 1, j ), 1, x( 1, j-1 ), 1,
1401 $ work( n+m-kb+j ), work( m-kb+j ) )
1406 DO 940 k = 1, kb - 1
1407 j2 = i + k + 1 - max( 1, k+i0-m+1 )*ka1
1411 DO 930 l = kb - k, 1, -1
1412 nrt = ( j2+l-1 ) / ka1
1413 j1t = j2 - ( nrt-1 )*ka1
1415 $
CALL slartv( nrt, ab( ka1-l+1, j1t-ka1+l ), inca,
1416 $ ab( ka1-l, j1t-ka1+l ), inca,
1417 $ work( n+j1t ), work( j1t ), ka1 )
1422 DO 950 j = 2, min( i+kb, m ) - 2*ka - 1
1423 work( n+j ) = work( n+j+ka )
1424 work( j ) = work( j+ka )
subroutine sger(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
SGER
subroutine slar2v(N, X, Y, Z, INCX, C, S, INCC)
SLAR2V applies a vector of plane rotations with real cosines and real sines from both sides to a sequ...
subroutine slartv(N, X, INCX, Y, INCY, C, S, INCC)
SLARTV applies a vector of plane rotations with real cosines and real sines to the elements of a pair...
subroutine slargv(N, X, INCX, Y, INCY, C, INCC)
SLARGV generates a vector of plane rotations with real cosines and real sines.
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine srot(N, SX, INCX, SY, INCY, C, S)
SROT
subroutine slartg(F, G, CS, SN, R)
SLARTG generates a plane rotation with real cosine and real sine.
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
subroutine sscal(N, SA, SX, INCX)
SSCAL
logical function lsame(CA, CB)
LSAME