LAPACK
3.6.1
LAPACK: Linear Algebra PACKage
|
subroutine dlqt01 | ( | integer | M, |
integer | N, | ||
double precision, dimension( lda, * ) | A, | ||
double precision, dimension( lda, * ) | AF, | ||
double precision, dimension( lda, * ) | Q, | ||
double precision, dimension( lda, * ) | L, | ||
integer | LDA, | ||
double precision, dimension( * ) | TAU, | ||
double precision, dimension( lwork ) | WORK, | ||
integer | LWORK, | ||
double precision, dimension( * ) | RWORK, | ||
double precision, dimension( * ) | RESULT | ||
) |
DLQT01
DLQT01 tests DGELQF, which computes the LQ factorization of an m-by-n matrix A, and partially tests DORGLQ which forms the n-by-n orthogonal matrix Q. DLQT01 compares L with A*Q', and checks that Q is orthogonal.
[in] | M | M is INTEGER The number of rows of the matrix A. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix A. N >= 0. |
[in] | A | A is DOUBLE PRECISION array, dimension (LDA,N) The m-by-n matrix A. |
[out] | AF | AF is DOUBLE PRECISION array, dimension (LDA,N) Details of the LQ factorization of A, as returned by DGELQF. See DGELQF for further details. |
[out] | Q | Q is DOUBLE PRECISION array, dimension (LDA,N) The n-by-n orthogonal matrix Q. |
[out] | L | L is DOUBLE PRECISION array, dimension (LDA,max(M,N)) |
[in] | LDA | LDA is INTEGER The leading dimension of the arrays A, AF, Q and L. LDA >= max(M,N). |
[out] | TAU | TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by DGELQF. |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (LWORK) |
[in] | LWORK | LWORK is INTEGER The dimension of the array WORK. |
[out] | RWORK | RWORK is DOUBLE PRECISION array, dimension (max(M,N)) |
[out] | RESULT | RESULT is DOUBLE PRECISION array, dimension (2) The test ratios: RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS ) RESULT(2) = norm( I - Q*Q' ) / ( N * EPS ) |
Definition at line 128 of file dlqt01.f.