LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cggsvd3 ( character  JOBU,
character  JOBV,
character  JOBQ,
integer  M,
integer  N,
integer  P,
integer  K,
integer  L,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldb, * )  B,
integer  LDB,
real, dimension( * )  ALPHA,
real, dimension( * )  BETA,
complex, dimension( ldu, * )  U,
integer  LDU,
complex, dimension( ldv, * )  V,
integer  LDV,
complex, dimension( ldq, * )  Q,
integer  LDQ,
complex, dimension( * )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Download CGGSVD3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGGSVD3 computes the generalized singular value decomposition (GSVD)
 of an M-by-N complex matrix A and P-by-N complex matrix B:

       U**H*A*Q = D1*( 0 R ),    V**H*B*Q = D2*( 0 R )

 where U, V and Q are unitary matrices.
 Let K+L = the effective numerical rank of the
 matrix (A**H,B**H)**H, then R is a (K+L)-by-(K+L) nonsingular upper
 triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
 matrices and of the following structures, respectively:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 =   L ( 0  S )
             P-L ( 0  0 )

                 N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 )
             L (  0    0   R22 )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                   K M-K K+L-M
        D1 =   K ( I  0    0   )
             M-K ( 0  C    0   )

                     K M-K K+L-M
        D2 =   M-K ( 0  S    0  )
             K+L-M ( 0  0    I  )
               P-L ( 0  0    0  )

                    N-K-L  K   M-K  K+L-M
   ( 0 R ) =     K ( 0    R11  R12  R13  )
               M-K ( 0     0   R22  R23  )
             K+L-M ( 0     0    0   R33  )

 where

   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
   S = diag( BETA(K+1),  ... , BETA(M) ),
   C**2 + S**2 = I.

   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
   ( 0  R22 R23 )
   in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The routine computes C, S, R, and optionally the unitary
 transformation matrices U, V and Q.

 In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
 A and B implicitly gives the SVD of A*inv(B):
                      A*inv(B) = U*(D1*inv(D2))*V**H.
 If ( A**H,B**H)**H has orthonormal columns, then the GSVD of A and B is also
 equal to the CS decomposition of A and B. Furthermore, the GSVD can
 be used to derive the solution of the eigenvalue problem:
                      A**H*A x = lambda* B**H*B x.
 In some literature, the GSVD of A and B is presented in the form
                  U**H*A*X = ( 0 D1 ),   V**H*B*X = ( 0 D2 )
 where U and V are orthogonal and X is nonsingular, and D1 and D2 are
 ``diagonal''.  The former GSVD form can be converted to the latter
 form by taking the nonsingular matrix X as

                       X = Q*(  I   0    )
                             (  0 inv(R) )
Parameters
[in]JOBU
          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.
[in]JOBV
          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.
[in]JOBQ
          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.
[in]P
          P is INTEGER
          The number of rows of the matrix B.  P >= 0.
[out]K
          K is INTEGER
[out]L
          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose.
          K + L = effective numerical rank of (A**H,B**H)**H.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular matrix R, or part of R.
          See Purpose for details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in,out]B
          B is COMPLEX array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains part of the triangular matrix R if
          M-K-L < 0.  See Purpose for details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).
[out]ALPHA
          ALPHA is REAL array, dimension (N)
[out]BETA
          BETA is REAL array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = C,
            BETA(K+1:K+L)  = S,
          or if M-K-L < 0,
            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
            BETA(K+1:M) =S, BETA(M+1:K+L) =1
          and
            ALPHA(K+L+1:N) = 0
            BETA(K+L+1:N)  = 0
[out]U
          U is COMPLEX array, dimension (LDU,M)
          If JOBU = 'U', U contains the M-by-M unitary matrix U.
          If JOBU = 'N', U is not referenced.
[in]LDU
          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.
[out]V
          V is COMPLEX array, dimension (LDV,P)
          If JOBV = 'V', V contains the P-by-P unitary matrix V.
          If JOBV = 'N', V is not referenced.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.
[out]Q
          Q is COMPLEX array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is REAL array, dimension (2*N)
[out]IWORK
          IWORK is INTEGER array, dimension (N)
          On exit, IWORK stores the sorting information. More
          precisely, the following loop will sort ALPHA
             for I = K+1, min(M,K+L)
                 swap ALPHA(I) and ALPHA(IWORK(I))
             endfor
          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = 1, the Jacobi-type procedure failed to
                converge.  For further details, see subroutine CTGSJA.
Internal Parameters:
  TOLA    REAL
  TOLB    REAL
          TOLA and TOLB are the thresholds to determine the effective
          rank of (A**H,B**H)**H. Generally, they are set to
                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
August 2015
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA
Further Details:
CGGSVD3 replaces the deprecated subroutine CGGSVD.

Definition at line 356 of file cggsvd3.f.

356 *
357 * -- LAPACK driver routine (version 3.6.0) --
358 * -- LAPACK is a software package provided by Univ. of Tennessee, --
359 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
360 * August 2015
361 *
362 * .. Scalar Arguments ..
363  CHARACTER jobq, jobu, jobv
364  INTEGER info, k, l, lda, ldb, ldq, ldu, ldv, m, n, p,
365  $ lwork
366 * ..
367 * .. Array Arguments ..
368  INTEGER iwork( * )
369  REAL alpha( * ), beta( * ), rwork( * )
370  COMPLEX a( lda, * ), b( ldb, * ), q( ldq, * ),
371  $ u( ldu, * ), v( ldv, * ), work( * )
372 * ..
373 *
374 * =====================================================================
375 *
376 * .. Local Scalars ..
377  LOGICAL wantq, wantu, wantv, lquery
378  INTEGER i, ibnd, isub, j, ncycle, lwkopt
379  REAL anorm, bnorm, smax, temp, tola, tolb, ulp, unfl
380 * ..
381 * .. External Functions ..
382  LOGICAL lsame
383  REAL clange, slamch
384  EXTERNAL lsame, clange, slamch
385 * ..
386 * .. External Subroutines ..
387  EXTERNAL cggsvp3, ctgsja, scopy, xerbla
388 * ..
389 * .. Intrinsic Functions ..
390  INTRINSIC max, min
391 * ..
392 * .. Executable Statements ..
393 *
394 * Decode and test the input parameters
395 *
396  wantu = lsame( jobu, 'U' )
397  wantv = lsame( jobv, 'V' )
398  wantq = lsame( jobq, 'Q' )
399  lquery = ( lwork.EQ.-1 )
400  lwkopt = 1
401 *
402 * Test the input arguments
403 *
404  info = 0
405  IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
406  info = -1
407  ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
408  info = -2
409  ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
410  info = -3
411  ELSE IF( m.LT.0 ) THEN
412  info = -4
413  ELSE IF( n.LT.0 ) THEN
414  info = -5
415  ELSE IF( p.LT.0 ) THEN
416  info = -6
417  ELSE IF( lda.LT.max( 1, m ) ) THEN
418  info = -10
419  ELSE IF( ldb.LT.max( 1, p ) ) THEN
420  info = -12
421  ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
422  info = -16
423  ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
424  info = -18
425  ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
426  info = -20
427  ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
428  info = -24
429  END IF
430 *
431 * Compute workspace
432 *
433  IF( info.EQ.0 ) THEN
434  CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
435  $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
436  $ work, work, -1, info )
437  lwkopt = n + int( work( 1 ) )
438  lwkopt = max( 2*n, lwkopt )
439  lwkopt = max( 1, lwkopt )
440  work( 1 ) = cmplx( lwkopt )
441  END IF
442 *
443  IF( info.NE.0 ) THEN
444  CALL xerbla( 'CGGSVD3', -info )
445  RETURN
446  END IF
447  IF( lquery ) THEN
448  RETURN
449  ENDIF
450 *
451 * Compute the Frobenius norm of matrices A and B
452 *
453  anorm = clange( '1', m, n, a, lda, rwork )
454  bnorm = clange( '1', p, n, b, ldb, rwork )
455 *
456 * Get machine precision and set up threshold for determining
457 * the effective numerical rank of the matrices A and B.
458 *
459  ulp = slamch( 'Precision' )
460  unfl = slamch( 'Safe Minimum' )
461  tola = max( m, n )*max( anorm, unfl )*ulp
462  tolb = max( p, n )*max( bnorm, unfl )*ulp
463 *
464  CALL cggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
465  $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, rwork,
466  $ work, work( n+1 ), lwork-n, info )
467 *
468 * Compute the GSVD of two upper "triangular" matrices
469 *
470  CALL ctgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
471  $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
472  $ work, ncycle, info )
473 *
474 * Sort the singular values and store the pivot indices in IWORK
475 * Copy ALPHA to RWORK, then sort ALPHA in RWORK
476 *
477  CALL scopy( n, alpha, 1, rwork, 1 )
478  ibnd = min( l, m-k )
479  DO 20 i = 1, ibnd
480 *
481 * Scan for largest ALPHA(K+I)
482 *
483  isub = i
484  smax = rwork( k+i )
485  DO 10 j = i + 1, ibnd
486  temp = rwork( k+j )
487  IF( temp.GT.smax ) THEN
488  isub = j
489  smax = temp
490  END IF
491  10 CONTINUE
492  IF( isub.NE.i ) THEN
493  rwork( k+isub ) = rwork( k+i )
494  rwork( k+i ) = smax
495  iwork( k+i ) = k + isub
496  ELSE
497  iwork( k+i ) = k + i
498  END IF
499  20 CONTINUE
500 *
501  work( 1 ) = cmplx( lwkopt )
502  RETURN
503 *
504 * End of CGGSVD3
505 *
subroutine cggsvp3(JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK, LWORK, INFO)
CGGSVP3
Definition: cggsvp3.f:280
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:117
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine ctgsja(JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, NCYCLE, INFO)
CTGSJA
Definition: ctgsja.f:381
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:53

Here is the call graph for this function:

Here is the caller graph for this function: