LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
sdrvpox.f
Go to the documentation of this file.
1 *> \brief \b SDRVPOX
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
24 * $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
25 * $ X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> SDRVPO tests the driver routines SPOSV, -SVX, and -SVXX.
35 *>
36 *> Note that this file is used only when the XBLAS are available,
37 *> otherwise sdrvpo.f defines this subroutine.
38 *> \endverbatim
39 *
40 * Arguments:
41 * ==========
42 *
43 *> \param[in] DOTYPE
44 *> \verbatim
45 *> DOTYPE is LOGICAL array, dimension (NTYPES)
46 *> The matrix types to be used for testing. Matrices of type j
47 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
48 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
49 *> \endverbatim
50 *>
51 *> \param[in] NN
52 *> \verbatim
53 *> NN is INTEGER
54 *> The number of values of N contained in the vector NVAL.
55 *> \endverbatim
56 *>
57 *> \param[in] NVAL
58 *> \verbatim
59 *> NVAL is INTEGER array, dimension (NN)
60 *> The values of the matrix dimension N.
61 *> \endverbatim
62 *>
63 *> \param[in] NRHS
64 *> \verbatim
65 *> NRHS is INTEGER
66 *> The number of right hand side vectors to be generated for
67 *> each linear system.
68 *> \endverbatim
69 *>
70 *> \param[in] THRESH
71 *> \verbatim
72 *> THRESH is REAL
73 *> The threshold value for the test ratios. A result is
74 *> included in the output file if RESULT >= THRESH. To have
75 *> every test ratio printed, use THRESH = 0.
76 *> \endverbatim
77 *>
78 *> \param[in] TSTERR
79 *> \verbatim
80 *> TSTERR is LOGICAL
81 *> Flag that indicates whether error exits are to be tested.
82 *> \endverbatim
83 *>
84 *> \param[in] NMAX
85 *> \verbatim
86 *> NMAX is INTEGER
87 *> The maximum value permitted for N, used in dimensioning the
88 *> work arrays.
89 *> \endverbatim
90 *>
91 *> \param[out] A
92 *> \verbatim
93 *> A is REAL array, dimension (NMAX*NMAX)
94 *> \endverbatim
95 *>
96 *> \param[out] AFAC
97 *> \verbatim
98 *> AFAC is REAL array, dimension (NMAX*NMAX)
99 *> \endverbatim
100 *>
101 *> \param[out] ASAV
102 *> \verbatim
103 *> ASAV is REAL array, dimension (NMAX*NMAX)
104 *> \endverbatim
105 *>
106 *> \param[out] B
107 *> \verbatim
108 *> B is REAL array, dimension (NMAX*NRHS)
109 *> \endverbatim
110 *>
111 *> \param[out] BSAV
112 *> \verbatim
113 *> BSAV is REAL array, dimension (NMAX*NRHS)
114 *> \endverbatim
115 *>
116 *> \param[out] X
117 *> \verbatim
118 *> X is REAL array, dimension (NMAX*NRHS)
119 *> \endverbatim
120 *>
121 *> \param[out] XACT
122 *> \verbatim
123 *> XACT is REAL array, dimension (NMAX*NRHS)
124 *> \endverbatim
125 *>
126 *> \param[out] S
127 *> \verbatim
128 *> S is REAL array, dimension (NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] WORK
132 *> \verbatim
133 *> WORK is REAL array, dimension
134 *> (NMAX*max(3,NRHS))
135 *> \endverbatim
136 *>
137 *> \param[out] RWORK
138 *> \verbatim
139 *> RWORK is REAL array, dimension (NMAX+2*NRHS)
140 *> \endverbatim
141 *>
142 *> \param[out] IWORK
143 *> \verbatim
144 *> IWORK is INTEGER array, dimension (NMAX)
145 *> \endverbatim
146 *>
147 *> \param[in] NOUT
148 *> \verbatim
149 *> NOUT is INTEGER
150 *> The unit number for output.
151 *> \endverbatim
152 *
153 * Authors:
154 * ========
155 *
156 *> \author Univ. of Tennessee
157 *> \author Univ. of California Berkeley
158 *> \author Univ. of Colorado Denver
159 *> \author NAG Ltd.
160 *
161 *> \date November 2013
162 *
163 *> \ingroup single_lin
164 *
165 * =====================================================================
166  SUBROUTINE sdrvpo( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
167  $ a, afac, asav, b, bsav, x, xact, s, work,
168  $ rwork, iwork, nout )
169 *
170 * -- LAPACK test routine (version 3.5.0) --
171 * -- LAPACK is a software package provided by Univ. of Tennessee, --
172 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173 * November 2013
174 *
175 * .. Scalar Arguments ..
176  LOGICAL tsterr
177  INTEGER nmax, nn, nout, nrhs
178  REAL thresh
179 * ..
180 * .. Array Arguments ..
181  LOGICAL dotype( * )
182  INTEGER iwork( * ), nval( * )
183  REAL a( * ), afac( * ), asav( * ), b( * ),
184  $ bsav( * ), rwork( * ), s( * ), work( * ),
185  $ x( * ), xact( * )
186 * ..
187 *
188 * =====================================================================
189 *
190 * .. Parameters ..
191  REAL one, zero
192  parameter ( one = 1.0e+0, zero = 0.0e+0 )
193  INTEGER ntypes
194  parameter ( ntypes = 9 )
195  INTEGER ntests
196  parameter ( ntests = 6 )
197 * ..
198 * .. Local Scalars ..
199  LOGICAL equil, nofact, prefac, zerot
200  CHARACTER dist, equed, fact, TYPE, uplo, xtype
201  CHARACTER*3 path
202  INTEGER i, iequed, ifact, imat, in, info, ioff, iuplo,
203  $ izero, k, k1, kl, ku, lda, mode, n, nb, nbmin,
204  $ nerrs, nfact, nfail, nimat, nrun, nt,
205  $ n_err_bnds
206  REAL ainvnm, amax, anorm, cndnum, rcond, rcondc,
207  $ roldc, scond, rpvgrw_svxx
208 * ..
209 * .. Local Arrays ..
210  CHARACTER equeds( 2 ), facts( 3 ), uplos( 2 )
211  INTEGER iseed( 4 ), iseedy( 4 )
212  REAL result( ntests ), berr( nrhs ),
213  $ errbnds_n( nrhs, 3 ), errbnds_c( nrhs, 3 )
214 * ..
215 * .. External Functions ..
216  LOGICAL lsame
217  REAL sget06, slansy
218  EXTERNAL lsame, sget06, slansy
219 * ..
220 * .. External Subroutines ..
221  EXTERNAL aladhd, alaerh, alasvm, serrvx, sget04, slacpy,
224  $ spotri, xlaenv
225 * ..
226 * .. Intrinsic Functions ..
227  INTRINSIC max
228 * ..
229 * .. Scalars in Common ..
230  LOGICAL lerr, ok
231  CHARACTER*32 srnamt
232  INTEGER infot, nunit
233 * ..
234 * .. Common blocks ..
235  COMMON / infoc / infot, nunit, ok, lerr
236  COMMON / srnamc / srnamt
237 * ..
238 * .. Data statements ..
239  DATA iseedy / 1988, 1989, 1990, 1991 /
240  DATA uplos / 'U', 'L' /
241  DATA facts / 'F', 'N', 'E' /
242  DATA equeds / 'N', 'Y' /
243 * ..
244 * .. Executable Statements ..
245 *
246 * Initialize constants and the random number seed.
247 *
248  path( 1: 1 ) = 'Single precision'
249  path( 2: 3 ) = 'PO'
250  nrun = 0
251  nfail = 0
252  nerrs = 0
253  DO 10 i = 1, 4
254  iseed( i ) = iseedy( i )
255  10 CONTINUE
256 *
257 * Test the error exits
258 *
259  IF( tsterr )
260  $ CALL serrvx( path, nout )
261  infot = 0
262 *
263 * Set the block size and minimum block size for testing.
264 *
265  nb = 1
266  nbmin = 2
267  CALL xlaenv( 1, nb )
268  CALL xlaenv( 2, nbmin )
269 *
270 * Do for each value of N in NVAL
271 *
272  DO 130 in = 1, nn
273  n = nval( in )
274  lda = max( n, 1 )
275  xtype = 'N'
276  nimat = ntypes
277  IF( n.LE.0 )
278  $ nimat = 1
279 *
280  DO 120 imat = 1, nimat
281 *
282 * Do the tests only if DOTYPE( IMAT ) is true.
283 *
284  IF( .NOT.dotype( imat ) )
285  $ GO TO 120
286 *
287 * Skip types 3, 4, or 5 if the matrix size is too small.
288 *
289  zerot = imat.GE.3 .AND. imat.LE.5
290  IF( zerot .AND. n.LT.imat-2 )
291  $ GO TO 120
292 *
293 * Do first for UPLO = 'U', then for UPLO = 'L'
294 *
295  DO 110 iuplo = 1, 2
296  uplo = uplos( iuplo )
297 *
298 * Set up parameters with SLATB4 and generate a test matrix
299 * with SLATMS.
300 *
301  CALL slatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
302  $ cndnum, dist )
303 *
304  srnamt = 'SLATMS'
305  CALL slatms( n, n, dist, iseed, TYPE, rwork, mode,
306  $ cndnum, anorm, kl, ku, uplo, a, lda, work,
307  $ info )
308 *
309 * Check error code from SLATMS.
310 *
311  IF( info.NE.0 ) THEN
312  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
313  $ -1, -1, imat, nfail, nerrs, nout )
314  GO TO 110
315  END IF
316 *
317 * For types 3-5, zero one row and column of the matrix to
318 * test that INFO is returned correctly.
319 *
320  IF( zerot ) THEN
321  IF( imat.EQ.3 ) THEN
322  izero = 1
323  ELSE IF( imat.EQ.4 ) THEN
324  izero = n
325  ELSE
326  izero = n / 2 + 1
327  END IF
328  ioff = ( izero-1 )*lda
329 *
330 * Set row and column IZERO of A to 0.
331 *
332  IF( iuplo.EQ.1 ) THEN
333  DO 20 i = 1, izero - 1
334  a( ioff+i ) = zero
335  20 CONTINUE
336  ioff = ioff + izero
337  DO 30 i = izero, n
338  a( ioff ) = zero
339  ioff = ioff + lda
340  30 CONTINUE
341  ELSE
342  ioff = izero
343  DO 40 i = 1, izero - 1
344  a( ioff ) = zero
345  ioff = ioff + lda
346  40 CONTINUE
347  ioff = ioff - izero
348  DO 50 i = izero, n
349  a( ioff+i ) = zero
350  50 CONTINUE
351  END IF
352  ELSE
353  izero = 0
354  END IF
355 *
356 * Save a copy of the matrix A in ASAV.
357 *
358  CALL slacpy( uplo, n, n, a, lda, asav, lda )
359 *
360  DO 100 iequed = 1, 2
361  equed = equeds( iequed )
362  IF( iequed.EQ.1 ) THEN
363  nfact = 3
364  ELSE
365  nfact = 1
366  END IF
367 *
368  DO 90 ifact = 1, nfact
369  fact = facts( ifact )
370  prefac = lsame( fact, 'F' )
371  nofact = lsame( fact, 'N' )
372  equil = lsame( fact, 'E' )
373 *
374  IF( zerot ) THEN
375  IF( prefac )
376  $ GO TO 90
377  rcondc = zero
378 *
379  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
380 *
381 * Compute the condition number for comparison with
382 * the value returned by SPOSVX (FACT = 'N' reuses
383 * the condition number from the previous iteration
384 * with FACT = 'F').
385 *
386  CALL slacpy( uplo, n, n, asav, lda, afac, lda )
387  IF( equil .OR. iequed.GT.1 ) THEN
388 *
389 * Compute row and column scale factors to
390 * equilibrate the matrix A.
391 *
392  CALL spoequ( n, afac, lda, s, scond, amax,
393  $ info )
394  IF( info.EQ.0 .AND. n.GT.0 ) THEN
395  IF( iequed.GT.1 )
396  $ scond = zero
397 *
398 * Equilibrate the matrix.
399 *
400  CALL slaqsy( uplo, n, afac, lda, s, scond,
401  $ amax, equed )
402  END IF
403  END IF
404 *
405 * Save the condition number of the
406 * non-equilibrated system for use in SGET04.
407 *
408  IF( equil )
409  $ roldc = rcondc
410 *
411 * Compute the 1-norm of A.
412 *
413  anorm = slansy( '1', uplo, n, afac, lda, rwork )
414 *
415 * Factor the matrix A.
416 *
417  CALL spotrf( uplo, n, afac, lda, info )
418 *
419 * Form the inverse of A.
420 *
421  CALL slacpy( uplo, n, n, afac, lda, a, lda )
422  CALL spotri( uplo, n, a, lda, info )
423 *
424 * Compute the 1-norm condition number of A.
425 *
426  ainvnm = slansy( '1', uplo, n, a, lda, rwork )
427  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
428  rcondc = one
429  ELSE
430  rcondc = ( one / anorm ) / ainvnm
431  END IF
432  END IF
433 *
434 * Restore the matrix A.
435 *
436  CALL slacpy( uplo, n, n, asav, lda, a, lda )
437 *
438 * Form an exact solution and set the right hand side.
439 *
440  srnamt = 'SLARHS'
441  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
442  $ nrhs, a, lda, xact, lda, b, lda,
443  $ iseed, info )
444  xtype = 'C'
445  CALL slacpy( 'Full', n, nrhs, b, lda, bsav, lda )
446 *
447  IF( nofact ) THEN
448 *
449 * --- Test SPOSV ---
450 *
451 * Compute the L*L' or U'*U factorization of the
452 * matrix and solve the system.
453 *
454  CALL slacpy( uplo, n, n, a, lda, afac, lda )
455  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
456 *
457  srnamt = 'SPOSV '
458  CALL sposv( uplo, n, nrhs, afac, lda, x, lda,
459  $ info )
460 *
461 * Check error code from SPOSV .
462 *
463  IF( info.NE.izero ) THEN
464  CALL alaerh( path, 'SPOSV ', info, izero,
465  $ uplo, n, n, -1, -1, nrhs, imat,
466  $ nfail, nerrs, nout )
467  GO TO 70
468  ELSE IF( info.NE.0 ) THEN
469  GO TO 70
470  END IF
471 *
472 * Reconstruct matrix from factors and compute
473 * residual.
474 *
475  CALL spot01( uplo, n, a, lda, afac, lda, rwork,
476  $ result( 1 ) )
477 *
478 * Compute residual of the computed solution.
479 *
480  CALL slacpy( 'Full', n, nrhs, b, lda, work,
481  $ lda )
482  CALL spot02( uplo, n, nrhs, a, lda, x, lda,
483  $ work, lda, rwork, result( 2 ) )
484 *
485 * Check solution from generated exact solution.
486 *
487  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
488  $ result( 3 ) )
489  nt = 3
490 *
491 * Print information about the tests that did not
492 * pass the threshold.
493 *
494  DO 60 k = 1, nt
495  IF( result( k ).GE.thresh ) THEN
496  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
497  $ CALL aladhd( nout, path )
498  WRITE( nout, fmt = 9999 )'SPOSV ', uplo,
499  $ n, imat, k, result( k )
500  nfail = nfail + 1
501  END IF
502  60 CONTINUE
503  nrun = nrun + nt
504  70 CONTINUE
505  END IF
506 *
507 * --- Test SPOSVX ---
508 *
509  IF( .NOT.prefac )
510  $ CALL slaset( uplo, n, n, zero, zero, afac, lda )
511  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
512  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
513 *
514 * Equilibrate the matrix if FACT='F' and
515 * EQUED='Y'.
516 *
517  CALL slaqsy( uplo, n, a, lda, s, scond, amax,
518  $ equed )
519  END IF
520 *
521 * Solve the system and compute the condition number
522 * and error bounds using SPOSVX.
523 *
524  srnamt = 'SPOSVX'
525  CALL sposvx( fact, uplo, n, nrhs, a, lda, afac,
526  $ lda, equed, s, b, lda, x, lda, rcond,
527  $ rwork, rwork( nrhs+1 ), work, iwork,
528  $ info )
529 *
530 * Check the error code from SPOSVX.
531 *
532  IF( info.NE.izero ) THEN
533  CALL alaerh( path, 'SPOSVX', info, izero,
534  $ fact // uplo, n, n, -1, -1, nrhs,
535  $ imat, nfail, nerrs, nout )
536  GO TO 90
537  END IF
538 *
539  IF( info.EQ.0 ) THEN
540  IF( .NOT.prefac ) THEN
541 *
542 * Reconstruct matrix from factors and compute
543 * residual.
544 *
545  CALL spot01( uplo, n, a, lda, afac, lda,
546  $ rwork( 2*nrhs+1 ), result( 1 ) )
547  k1 = 1
548  ELSE
549  k1 = 2
550  END IF
551 *
552 * Compute residual of the computed solution.
553 *
554  CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
555  $ lda )
556  CALL spot02( uplo, n, nrhs, asav, lda, x, lda,
557  $ work, lda, rwork( 2*nrhs+1 ),
558  $ result( 2 ) )
559 *
560 * Check solution from generated exact solution.
561 *
562  IF( nofact .OR. ( prefac .AND. lsame( equed,
563  $ 'N' ) ) ) THEN
564  CALL sget04( n, nrhs, x, lda, xact, lda,
565  $ rcondc, result( 3 ) )
566  ELSE
567  CALL sget04( n, nrhs, x, lda, xact, lda,
568  $ roldc, result( 3 ) )
569  END IF
570 *
571 * Check the error bounds from iterative
572 * refinement.
573 *
574  CALL spot05( uplo, n, nrhs, asav, lda, b, lda,
575  $ x, lda, xact, lda, rwork,
576  $ rwork( nrhs+1 ), result( 4 ) )
577  ELSE
578  k1 = 6
579  END IF
580 *
581 * Compare RCOND from SPOSVX with the computed value
582 * in RCONDC.
583 *
584  result( 6 ) = sget06( rcond, rcondc )
585 *
586 * Print information about the tests that did not pass
587 * the threshold.
588 *
589  DO 80 k = k1, 6
590  IF( result( k ).GE.thresh ) THEN
591  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
592  $ CALL aladhd( nout, path )
593  IF( prefac ) THEN
594  WRITE( nout, fmt = 9997 )'SPOSVX', fact,
595  $ uplo, n, equed, imat, k, result( k )
596  ELSE
597  WRITE( nout, fmt = 9998 )'SPOSVX', fact,
598  $ uplo, n, imat, k, result( k )
599  END IF
600  nfail = nfail + 1
601  END IF
602  80 CONTINUE
603  nrun = nrun + 7 - k1
604 *
605 * --- Test SPOSVXX ---
606 *
607 * Restore the matrices A and B.
608 *
609  CALL slacpy( 'Full', n, n, asav, lda, a, lda )
610  CALL slacpy( 'Full', n, nrhs, bsav, lda, b, lda )
611 
612  IF( .NOT.prefac )
613  $ CALL slaset( uplo, n, n, zero, zero, afac, lda )
614  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
615  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
616 *
617 * Equilibrate the matrix if FACT='F' and
618 * EQUED='Y'.
619 *
620  CALL slaqsy( uplo, n, a, lda, s, scond, amax,
621  $ equed )
622  END IF
623 *
624 * Solve the system and compute the condition number
625 * and error bounds using SPOSVXX.
626 *
627  srnamt = 'SPOSVXX'
628  n_err_bnds = 3
629  CALL sposvxx( fact, uplo, n, nrhs, a, lda, afac,
630  $ lda, equed, s, b, lda, x,
631  $ lda, rcond, rpvgrw_svxx, berr, n_err_bnds,
632  $ errbnds_n, errbnds_c, 0, zero, work,
633  $ iwork, info )
634 *
635 * Check the error code from SPOSVXX.
636 *
637  IF( info.EQ.n+1 ) GOTO 90
638  IF( info.NE.izero ) THEN
639  CALL alaerh( path, 'SPOSVXX', info, izero,
640  $ fact // uplo, n, n, -1, -1, nrhs,
641  $ imat, nfail, nerrs, nout )
642  GO TO 90
643  END IF
644 *
645  IF( info.EQ.0 ) THEN
646  IF( .NOT.prefac ) THEN
647 *
648 * Reconstruct matrix from factors and compute
649 * residual.
650 *
651  CALL spot01( uplo, n, a, lda, afac, lda,
652  $ rwork( 2*nrhs+1 ), result( 1 ) )
653  k1 = 1
654  ELSE
655  k1 = 2
656  END IF
657 *
658 * Compute residual of the computed solution.
659 *
660  CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
661  $ lda )
662  CALL spot02( uplo, n, nrhs, asav, lda, x, lda,
663  $ work, lda, rwork( 2*nrhs+1 ),
664  $ result( 2 ) )
665 *
666 * Check solution from generated exact solution.
667 *
668  IF( nofact .OR. ( prefac .AND. lsame( equed,
669  $ 'N' ) ) ) THEN
670  CALL sget04( n, nrhs, x, lda, xact, lda,
671  $ rcondc, result( 3 ) )
672  ELSE
673  CALL sget04( n, nrhs, x, lda, xact, lda,
674  $ roldc, result( 3 ) )
675  END IF
676 *
677 * Check the error bounds from iterative
678 * refinement.
679 *
680  CALL spot05( uplo, n, nrhs, asav, lda, b, lda,
681  $ x, lda, xact, lda, rwork,
682  $ rwork( nrhs+1 ), result( 4 ) )
683  ELSE
684  k1 = 6
685  END IF
686 *
687 * Compare RCOND from SPOSVXX with the computed value
688 * in RCONDC.
689 *
690  result( 6 ) = sget06( rcond, rcondc )
691 *
692 * Print information about the tests that did not pass
693 * the threshold.
694 *
695  DO 85 k = k1, 6
696  IF( result( k ).GE.thresh ) THEN
697  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
698  $ CALL aladhd( nout, path )
699  IF( prefac ) THEN
700  WRITE( nout, fmt = 9997 )'SPOSVXX', fact,
701  $ uplo, n, equed, imat, k, result( k )
702  ELSE
703  WRITE( nout, fmt = 9998 )'SPOSVXX', fact,
704  $ uplo, n, imat, k, result( k )
705  END IF
706  nfail = nfail + 1
707  END IF
708  85 CONTINUE
709  nrun = nrun + 7 - k1
710  90 CONTINUE
711  100 CONTINUE
712  110 CONTINUE
713  120 CONTINUE
714  130 CONTINUE
715 *
716 * Print a summary of the results.
717 *
718  CALL alasvm( path, nout, nfail, nrun, nerrs )
719 *
720 
721 * Test Error Bounds from SPOSVXX
722 
723  CALL sebchvxx(thresh, path)
724 
725  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
726  $ ', test(', i1, ')=', g12.5 )
727  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
728  $ ', type ', i1, ', test(', i1, ')=', g12.5 )
729  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
730  $ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ') =',
731  $ g12.5 )
732  RETURN
733 *
734 * End of SDRVPO
735 *
736  END
subroutine sposvxx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO)
SPOSVXX computes the solution to system of linear equations A * X = B for PO matrices ...
Definition: sposvxx.f:499
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:75
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:122
subroutine sebchvxx(THRESH, PATH)
SEBCHVXX
Definition: sebchvxx.f:98
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:206
subroutine spot01(UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
SPOT01
Definition: spot01.f:106
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:57
subroutine spot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPOT05
Definition: spot05.f:166
subroutine sdrvpo(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
SDRVPO
Definition: sdrvpo.f:166
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:105
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine spotrf(UPLO, N, A, LDA, INFO)
SPOTRF
Definition: spotrf.f:109
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: slaset.f:112
subroutine slaqsy(UPLO, N, A, LDA, S, SCOND, AMAX, EQUED)
SLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.
Definition: slaqsy.f:135
subroutine sposv(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
SPOSV computes the solution to system of linear equations A * X = B for PO matrices ...
Definition: sposv.f:132
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:104
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:80
subroutine spoequ(N, A, LDA, S, SCOND, AMAX, INFO)
SPOEQU
Definition: spoequ.f:114
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:57
subroutine spot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SPOT02
Definition: spot02.f:129
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine spotri(UPLO, N, A, LDA, INFO)
SPOTRI
Definition: spotri.f:97
subroutine sposvx(FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SPOSVX computes the solution to system of linear equations A * X = B for PO matrices ...
Definition: sposvx.f:309
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
Definition: slansy.f:124