LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine stprfb ( character  SIDE,
character  TRANS,
character  DIRECT,
character  STOREV,
integer  M,
integer  N,
integer  K,
integer  L,
real, dimension( ldv, * )  V,
integer  LDV,
real, dimension( ldt, * )  T,
integer  LDT,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldb, * )  B,
integer  LDB,
real, dimension( ldwork, * )  WORK,
integer  LDWORK 
)

STPRFB applies a real or complex "triangular-pentagonal" blocked reflector to a real or complex matrix, which is composed of two blocks.

Download STPRFB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 STPRFB applies a real "triangular-pentagonal" block reflector H or its 
 conjugate transpose H^H to a real matrix C, which is composed of two 
 blocks A and B, either from the left or right.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply H or H^H from the Left
          = 'R': apply H or H^H from the Right
[in]TRANS
          TRANS is CHARACTER*1
          = 'N': apply H (No transpose)
          = 'C': apply H^H (Conjugate transpose)
[in]DIRECT
          DIRECT is CHARACTER*1
          Indicates how H is formed from a product of elementary
          reflectors
          = 'F': H = H(1) H(2) . . . H(k) (Forward)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
[in]STOREV
          STOREV is CHARACTER*1
          Indicates how the vectors which define the elementary
          reflectors are stored:
          = 'C': Columns
          = 'R': Rows
[in]M
          M is INTEGER
          The number of rows of the matrix B.  
          M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix B.  
          N >= 0.
[in]K
          K is INTEGER
          The order of the matrix T, i.e. the number of elementary
          reflectors whose product defines the block reflector.  
          K >= 0.
[in]L
          L is INTEGER
          The order of the trapezoidal part of V.  
          K >= L >= 0.  See Further Details.
[in]V
          V is REAL array, dimension
                                (LDV,K) if STOREV = 'C'
                                (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                (LDV,N) if STOREV = 'R' and SIDE = 'R'
          The pentagonal matrix V, which contains the elementary reflectors
          H(1), H(2), ..., H(K).  See Further Details.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
          if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
          if STOREV = 'R', LDV >= K.
[in]T
          T is REAL array, dimension (LDT,K)
          The triangular K-by-K matrix T in the representation of the
          block reflector.  
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T. 
          LDT >= K.
[in,out]A
          A is REAL array, dimension
          (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of 
          H*C or H^H*C or C*H or C*H^H.  See Futher Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. 
          If SIDE = 'L', LDC >= max(1,K);
          If SIDE = 'R', LDC >= max(1,M). 
[in,out]B
          B is REAL array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          H*C or H^H*C or C*H or C*H^H.  See Further Details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. 
          LDB >= max(1,M).
[out]WORK
          WORK is REAL array, dimension
          (LDWORK,N) if SIDE = 'L',
          (LDWORK,K) if SIDE = 'R'.
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of the array WORK.
          If SIDE = 'L', LDWORK >= K; 
          if SIDE = 'R', LDWORK >= M.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012
Further Details:
  The matrix C is a composite matrix formed from blocks A and B.
  The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, 
  and if SIDE = 'L', A is of size K-by-N.

  If SIDE = 'R' and DIRECT = 'F', C = [A B].

  If SIDE = 'L' and DIRECT = 'F', C = [A] 
                                      [B].

  If SIDE = 'R' and DIRECT = 'B', C = [B A].

  If SIDE = 'L' and DIRECT = 'B', C = [B]
                                      [A]. 

  The pentagonal matrix V is composed of a rectangular block V1 and a 
  trapezoidal block V2.  The size of the trapezoidal block is determined by 
  the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
  if L=0, there is no trapezoidal block, thus V = V1 is rectangular.

  If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                         [V2]
     - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)

  If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]

     - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)

  If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                         [V1]
     - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)

  If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]
    
     - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)

  If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.

  If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.

  If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.

  If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Definition at line 253 of file stprfb.f.

253 *
254 * -- LAPACK auxiliary routine (version 3.4.2) --
255 * -- LAPACK is a software package provided by Univ. of Tennessee, --
256 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
257 * September 2012
258 *
259 * .. Scalar Arguments ..
260  CHARACTER direct, side, storev, trans
261  INTEGER k, l, lda, ldb, ldt, ldv, ldwork, m, n
262 * ..
263 * .. Array Arguments ..
264  REAL a( lda, * ), b( ldb, * ), t( ldt, * ),
265  $ v( ldv, * ), work( ldwork, * )
266 * ..
267 *
268 * ==========================================================================
269 *
270 * .. Parameters ..
271  REAL one, zero
272  parameter( one = 1.0, zero = 0.0 )
273 * ..
274 * .. Local Scalars ..
275  INTEGER i, j, mp, np, kp
276  LOGICAL left, forward, column, right, backward, row
277 * ..
278 * .. External Functions ..
279  LOGICAL lsame
280  EXTERNAL lsame
281 * ..
282 * .. External Subroutines ..
283  EXTERNAL sgemm, strmm
284 * ..
285 * .. Executable Statements ..
286 *
287 * Quick return if possible
288 *
289  IF( m.LE.0 .OR. n.LE.0 .OR. k.LE.0 .OR. l.LT.0 ) RETURN
290 *
291  IF( lsame( storev, 'C' ) ) THEN
292  column = .true.
293  row = .false.
294  ELSE IF ( lsame( storev, 'R' ) ) THEN
295  column = .false.
296  row = .true.
297  ELSE
298  column = .false.
299  row = .false.
300  END IF
301 *
302  IF( lsame( side, 'L' ) ) THEN
303  left = .true.
304  right = .false.
305  ELSE IF( lsame( side, 'R' ) ) THEN
306  left = .false.
307  right = .true.
308  ELSE
309  left = .false.
310  right = .false.
311  END IF
312 *
313  IF( lsame( direct, 'F' ) ) THEN
314  forward = .true.
315  backward = .false.
316  ELSE IF( lsame( direct, 'B' ) ) THEN
317  forward = .false.
318  backward = .true.
319  ELSE
320  forward = .false.
321  backward = .false.
322  END IF
323 *
324 * ---------------------------------------------------------------------------
325 *
326  IF( column .AND. forward .AND. left ) THEN
327 *
328 * ---------------------------------------------------------------------------
329 *
330 * Let W = [ I ] (K-by-K)
331 * [ V ] (M-by-K)
332 *
333 * Form H C or H^H C where C = [ A ] (K-by-N)
334 * [ B ] (M-by-N)
335 *
336 * H = I - W T W^H or H^H = I - W T^H W^H
337 *
338 * A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
339 * B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
340 *
341 * ---------------------------------------------------------------------------
342 *
343  mp = min( m-l+1, m )
344  kp = min( l+1, k )
345 *
346  DO j = 1, n
347  DO i = 1, l
348  work( i, j ) = b( m-l+i, j )
349  END DO
350  END DO
351  CALL strmm( 'L', 'U', 'T', 'N', l, n, one, v( mp, 1 ), ldv,
352  $ work, ldwork )
353  CALL sgemm( 'T', 'N', l, n, m-l, one, v, ldv, b, ldb,
354  $ one, work, ldwork )
355  CALL sgemm( 'T', 'N', k-l, n, m, one, v( 1, kp ), ldv,
356  $ b, ldb, zero, work( kp, 1 ), ldwork )
357 *
358  DO j = 1, n
359  DO i = 1, k
360  work( i, j ) = work( i, j ) + a( i, j )
361  END DO
362  END DO
363 *
364  CALL strmm( 'L', 'U', trans, 'N', k, n, one, t, ldt,
365  $ work, ldwork )
366 *
367  DO j = 1, n
368  DO i = 1, k
369  a( i, j ) = a( i, j ) - work( i, j )
370  END DO
371  END DO
372 *
373  CALL sgemm( 'N', 'N', m-l, n, k, -one, v, ldv, work, ldwork,
374  $ one, b, ldb )
375  CALL sgemm( 'N', 'N', l, n, k-l, -one, v( mp, kp ), ldv,
376  $ work( kp, 1 ), ldwork, one, b( mp, 1 ), ldb )
377  CALL strmm( 'L', 'U', 'N', 'N', l, n, one, v( mp, 1 ), ldv,
378  $ work, ldwork )
379  DO j = 1, n
380  DO i = 1, l
381  b( m-l+i, j ) = b( m-l+i, j ) - work( i, j )
382  END DO
383  END DO
384 *
385 * ---------------------------------------------------------------------------
386 *
387  ELSE IF( column .AND. forward .AND. right ) THEN
388 *
389 * ---------------------------------------------------------------------------
390 *
391 * Let W = [ I ] (K-by-K)
392 * [ V ] (N-by-K)
393 *
394 * Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
395 *
396 * H = I - W T W^H or H^H = I - W T^H W^H
397 *
398 * A = A - (A + B V) T or A = A - (A + B V) T^H
399 * B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
400 *
401 * ---------------------------------------------------------------------------
402 *
403  np = min( n-l+1, n )
404  kp = min( l+1, k )
405 *
406  DO j = 1, l
407  DO i = 1, m
408  work( i, j ) = b( i, n-l+j )
409  END DO
410  END DO
411  CALL strmm( 'R', 'U', 'N', 'N', m, l, one, v( np, 1 ), ldv,
412  $ work, ldwork )
413  CALL sgemm( 'N', 'N', m, l, n-l, one, b, ldb,
414  $ v, ldv, one, work, ldwork )
415  CALL sgemm( 'N', 'N', m, k-l, n, one, b, ldb,
416  $ v( 1, kp ), ldv, zero, work( 1, kp ), ldwork )
417 *
418  DO j = 1, k
419  DO i = 1, m
420  work( i, j ) = work( i, j ) + a( i, j )
421  END DO
422  END DO
423 *
424  CALL strmm( 'R', 'U', trans, 'N', m, k, one, t, ldt,
425  $ work, ldwork )
426 *
427  DO j = 1, k
428  DO i = 1, m
429  a( i, j ) = a( i, j ) - work( i, j )
430  END DO
431  END DO
432 *
433  CALL sgemm( 'N', 'T', m, n-l, k, -one, work, ldwork,
434  $ v, ldv, one, b, ldb )
435  CALL sgemm( 'N', 'T', m, l, k-l, -one, work( 1, kp ), ldwork,
436  $ v( np, kp ), ldv, one, b( 1, np ), ldb )
437  CALL strmm( 'R', 'U', 'T', 'N', m, l, one, v( np, 1 ), ldv,
438  $ work, ldwork )
439  DO j = 1, l
440  DO i = 1, m
441  b( i, n-l+j ) = b( i, n-l+j ) - work( i, j )
442  END DO
443  END DO
444 *
445 * ---------------------------------------------------------------------------
446 *
447  ELSE IF( column .AND. backward .AND. left ) THEN
448 *
449 * ---------------------------------------------------------------------------
450 *
451 * Let W = [ V ] (M-by-K)
452 * [ I ] (K-by-K)
453 *
454 * Form H C or H^H C where C = [ B ] (M-by-N)
455 * [ A ] (K-by-N)
456 *
457 * H = I - W T W^H or H^H = I - W T^H W^H
458 *
459 * A = A - T (A + V^H B) or A = A - T^H (A + V^H B)
460 * B = B - V T (A + V^H B) or B = B - V T^H (A + V^H B)
461 *
462 * ---------------------------------------------------------------------------
463 *
464  mp = min( l+1, m )
465  kp = min( k-l+1, k )
466 *
467  DO j = 1, n
468  DO i = 1, l
469  work( k-l+i, j ) = b( i, j )
470  END DO
471  END DO
472 *
473  CALL strmm( 'L', 'L', 'T', 'N', l, n, one, v( 1, kp ), ldv,
474  $ work( kp, 1 ), ldwork )
475  CALL sgemm( 'T', 'N', l, n, m-l, one, v( mp, kp ), ldv,
476  $ b( mp, 1 ), ldb, one, work( kp, 1 ), ldwork )
477  CALL sgemm( 'T', 'N', k-l, n, m, one, v, ldv,
478  $ b, ldb, zero, work, ldwork )
479 *
480  DO j = 1, n
481  DO i = 1, k
482  work( i, j ) = work( i, j ) + a( i, j )
483  END DO
484  END DO
485 *
486  CALL strmm( 'L', 'L', trans, 'N', k, n, one, t, ldt,
487  $ work, ldwork )
488 *
489  DO j = 1, n
490  DO i = 1, k
491  a( i, j ) = a( i, j ) - work( i, j )
492  END DO
493  END DO
494 *
495  CALL sgemm( 'N', 'N', m-l, n, k, -one, v( mp, 1 ), ldv,
496  $ work, ldwork, one, b( mp, 1 ), ldb )
497  CALL sgemm( 'N', 'N', l, n, k-l, -one, v, ldv,
498  $ work, ldwork, one, b, ldb )
499  CALL strmm( 'L', 'L', 'N', 'N', l, n, one, v( 1, kp ), ldv,
500  $ work( kp, 1 ), ldwork )
501  DO j = 1, n
502  DO i = 1, l
503  b( i, j ) = b( i, j ) - work( k-l+i, j )
504  END DO
505  END DO
506 *
507 * ---------------------------------------------------------------------------
508 *
509  ELSE IF( column .AND. backward .AND. right ) THEN
510 *
511 * ---------------------------------------------------------------------------
512 *
513 * Let W = [ V ] (N-by-K)
514 * [ I ] (K-by-K)
515 *
516 * Form C H or C H^H where C = [ B A ] (B is M-by-N, A is M-by-K)
517 *
518 * H = I - W T W^H or H^H = I - W T^H W^H
519 *
520 * A = A - (A + B V) T or A = A - (A + B V) T^H
521 * B = B - (A + B V) T V^H or B = B - (A + B V) T^H V^H
522 *
523 * ---------------------------------------------------------------------------
524 *
525  np = min( l+1, n )
526  kp = min( k-l+1, k )
527 *
528  DO j = 1, l
529  DO i = 1, m
530  work( i, k-l+j ) = b( i, j )
531  END DO
532  END DO
533  CALL strmm( 'R', 'L', 'N', 'N', m, l, one, v( 1, kp ), ldv,
534  $ work( 1, kp ), ldwork )
535  CALL sgemm( 'N', 'N', m, l, n-l, one, b( 1, np ), ldb,
536  $ v( np, kp ), ldv, one, work( 1, kp ), ldwork )
537  CALL sgemm( 'N', 'N', m, k-l, n, one, b, ldb,
538  $ v, ldv, zero, work, ldwork )
539 *
540  DO j = 1, k
541  DO i = 1, m
542  work( i, j ) = work( i, j ) + a( i, j )
543  END DO
544  END DO
545 *
546  CALL strmm( 'R', 'L', trans, 'N', m, k, one, t, ldt,
547  $ work, ldwork )
548 *
549  DO j = 1, k
550  DO i = 1, m
551  a( i, j ) = a( i, j ) - work( i, j )
552  END DO
553  END DO
554 *
555  CALL sgemm( 'N', 'T', m, n-l, k, -one, work, ldwork,
556  $ v( np, 1 ), ldv, one, b( 1, np ), ldb )
557  CALL sgemm( 'N', 'T', m, l, k-l, -one, work, ldwork,
558  $ v, ldv, one, b, ldb )
559  CALL strmm( 'R', 'L', 'T', 'N', m, l, one, v( 1, kp ), ldv,
560  $ work( 1, kp ), ldwork )
561  DO j = 1, l
562  DO i = 1, m
563  b( i, j ) = b( i, j ) - work( i, k-l+j )
564  END DO
565  END DO
566 *
567 * ---------------------------------------------------------------------------
568 *
569  ELSE IF( row .AND. forward .AND. left ) THEN
570 *
571 * ---------------------------------------------------------------------------
572 *
573 * Let W = [ I V ] ( I is K-by-K, V is K-by-M )
574 *
575 * Form H C or H^H C where C = [ A ] (K-by-N)
576 * [ B ] (M-by-N)
577 *
578 * H = I - W^H T W or H^H = I - W^H T^H W
579 *
580 * A = A - T (A + V B) or A = A - T^H (A + V B)
581 * B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
582 *
583 * ---------------------------------------------------------------------------
584 *
585  mp = min( m-l+1, m )
586  kp = min( l+1, k )
587 *
588  DO j = 1, n
589  DO i = 1, l
590  work( i, j ) = b( m-l+i, j )
591  END DO
592  END DO
593  CALL strmm( 'L', 'L', 'N', 'N', l, n, one, v( 1, mp ), ldv,
594  $ work, ldb )
595  CALL sgemm( 'N', 'N', l, n, m-l, one, v, ldv,b, ldb,
596  $ one, work, ldwork )
597  CALL sgemm( 'N', 'N', k-l, n, m, one, v( kp, 1 ), ldv,
598  $ b, ldb, zero, work( kp, 1 ), ldwork )
599 *
600  DO j = 1, n
601  DO i = 1, k
602  work( i, j ) = work( i, j ) + a( i, j )
603  END DO
604  END DO
605 *
606  CALL strmm( 'L', 'U', trans, 'N', k, n, one, t, ldt,
607  $ work, ldwork )
608 *
609  DO j = 1, n
610  DO i = 1, k
611  a( i, j ) = a( i, j ) - work( i, j )
612  END DO
613  END DO
614 *
615  CALL sgemm( 'T', 'N', m-l, n, k, -one, v, ldv, work, ldwork,
616  $ one, b, ldb )
617  CALL sgemm( 'T', 'N', l, n, k-l, -one, v( kp, mp ), ldv,
618  $ work( kp, 1 ), ldwork, one, b( mp, 1 ), ldb )
619  CALL strmm( 'L', 'L', 'T', 'N', l, n, one, v( 1, mp ), ldv,
620  $ work, ldwork )
621  DO j = 1, n
622  DO i = 1, l
623  b( m-l+i, j ) = b( m-l+i, j ) - work( i, j )
624  END DO
625  END DO
626 *
627 * ---------------------------------------------------------------------------
628 *
629  ELSE IF( row .AND. forward .AND. right ) THEN
630 *
631 * ---------------------------------------------------------------------------
632 *
633 * Let W = [ I V ] ( I is K-by-K, V is K-by-N )
634 *
635 * Form C H or C H^H where C = [ A B ] (A is M-by-K, B is M-by-N)
636 *
637 * H = I - W^H T W or H^H = I - W^H T^H W
638 *
639 * A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
640 * B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
641 *
642 * ---------------------------------------------------------------------------
643 *
644  np = min( n-l+1, n )
645  kp = min( l+1, k )
646 *
647  DO j = 1, l
648  DO i = 1, m
649  work( i, j ) = b( i, n-l+j )
650  END DO
651  END DO
652  CALL strmm( 'R', 'L', 'T', 'N', m, l, one, v( 1, np ), ldv,
653  $ work, ldwork )
654  CALL sgemm( 'N', 'T', m, l, n-l, one, b, ldb, v, ldv,
655  $ one, work, ldwork )
656  CALL sgemm( 'N', 'T', m, k-l, n, one, b, ldb,
657  $ v( kp, 1 ), ldv, zero, work( 1, kp ), ldwork )
658 *
659  DO j = 1, k
660  DO i = 1, m
661  work( i, j ) = work( i, j ) + a( i, j )
662  END DO
663  END DO
664 *
665  CALL strmm( 'R', 'U', trans, 'N', m, k, one, t, ldt,
666  $ work, ldwork )
667 *
668  DO j = 1, k
669  DO i = 1, m
670  a( i, j ) = a( i, j ) - work( i, j )
671  END DO
672  END DO
673 *
674  CALL sgemm( 'N', 'N', m, n-l, k, -one, work, ldwork,
675  $ v, ldv, one, b, ldb )
676  CALL sgemm( 'N', 'N', m, l, k-l, -one, work( 1, kp ), ldwork,
677  $ v( kp, np ), ldv, one, b( 1, np ), ldb )
678  CALL strmm( 'R', 'L', 'N', 'N', m, l, one, v( 1, np ), ldv,
679  $ work, ldwork )
680  DO j = 1, l
681  DO i = 1, m
682  b( i, n-l+j ) = b( i, n-l+j ) - work( i, j )
683  END DO
684  END DO
685 *
686 * ---------------------------------------------------------------------------
687 *
688  ELSE IF( row .AND. backward .AND. left ) THEN
689 *
690 * ---------------------------------------------------------------------------
691 *
692 * Let W = [ V I ] ( I is K-by-K, V is K-by-M )
693 *
694 * Form H C or H^H C where C = [ B ] (M-by-N)
695 * [ A ] (K-by-N)
696 *
697 * H = I - W^H T W or H^H = I - W^H T^H W
698 *
699 * A = A - T (A + V B) or A = A - T^H (A + V B)
700 * B = B - V^H T (A + V B) or B = B - V^H T^H (A + V B)
701 *
702 * ---------------------------------------------------------------------------
703 *
704  mp = min( l+1, m )
705  kp = min( k-l+1, k )
706 *
707  DO j = 1, n
708  DO i = 1, l
709  work( k-l+i, j ) = b( i, j )
710  END DO
711  END DO
712  CALL strmm( 'L', 'U', 'N', 'N', l, n, one, v( kp, 1 ), ldv,
713  $ work( kp, 1 ), ldwork )
714  CALL sgemm( 'N', 'N', l, n, m-l, one, v( kp, mp ), ldv,
715  $ b( mp, 1 ), ldb, one, work( kp, 1 ), ldwork )
716  CALL sgemm( 'N', 'N', k-l, n, m, one, v, ldv, b, ldb,
717  $ zero, work, ldwork )
718 *
719  DO j = 1, n
720  DO i = 1, k
721  work( i, j ) = work( i, j ) + a( i, j )
722  END DO
723  END DO
724 *
725  CALL strmm( 'L', 'L ', trans, 'N', k, n, one, t, ldt,
726  $ work, ldwork )
727 *
728  DO j = 1, n
729  DO i = 1, k
730  a( i, j ) = a( i, j ) - work( i, j )
731  END DO
732  END DO
733 *
734  CALL sgemm( 'T', 'N', m-l, n, k, -one, v( 1, mp ), ldv,
735  $ work, ldwork, one, b( mp, 1 ), ldb )
736  CALL sgemm( 'T', 'N', l, n, k-l, -one, v, ldv,
737  $ work, ldwork, one, b, ldb )
738  CALL strmm( 'L', 'U', 'T', 'N', l, n, one, v( kp, 1 ), ldv,
739  $ work( kp, 1 ), ldwork )
740  DO j = 1, n
741  DO i = 1, l
742  b( i, j ) = b( i, j ) - work( k-l+i, j )
743  END DO
744  END DO
745 *
746 * ---------------------------------------------------------------------------
747 *
748  ELSE IF( row .AND. backward .AND. right ) THEN
749 *
750 * ---------------------------------------------------------------------------
751 *
752 * Let W = [ V I ] ( I is K-by-K, V is K-by-N )
753 *
754 * Form C H or C H^H where C = [ B A ] (A is M-by-K, B is M-by-N)
755 *
756 * H = I - W^H T W or H^H = I - W^H T^H W
757 *
758 * A = A - (A + B V^H) T or A = A - (A + B V^H) T^H
759 * B = B - (A + B V^H) T V or B = B - (A + B V^H) T^H V
760 *
761 * ---------------------------------------------------------------------------
762 *
763  np = min( l+1, n )
764  kp = min( k-l+1, k )
765 *
766  DO j = 1, l
767  DO i = 1, m
768  work( i, k-l+j ) = b( i, j )
769  END DO
770  END DO
771  CALL strmm( 'R', 'U', 'T', 'N', m, l, one, v( kp, 1 ), ldv,
772  $ work( 1, kp ), ldwork )
773  CALL sgemm( 'N', 'T', m, l, n-l, one, b( 1, np ), ldb,
774  $ v( kp, np ), ldv, one, work( 1, kp ), ldwork )
775  CALL sgemm( 'N', 'T', m, k-l, n, one, b, ldb, v, ldv,
776  $ zero, work, ldwork )
777 *
778  DO j = 1, k
779  DO i = 1, m
780  work( i, j ) = work( i, j ) + a( i, j )
781  END DO
782  END DO
783 *
784  CALL strmm( 'R', 'L', trans, 'N', m, k, one, t, ldt,
785  $ work, ldwork )
786 *
787  DO j = 1, k
788  DO i = 1, m
789  a( i, j ) = a( i, j ) - work( i, j )
790  END DO
791  END DO
792 *
793  CALL sgemm( 'N', 'N', m, n-l, k, -one, work, ldwork,
794  $ v( 1, np ), ldv, one, b( 1, np ), ldb )
795  CALL sgemm( 'N', 'N', m, l, k-l , -one, work, ldwork,
796  $ v, ldv, one, b, ldb )
797  CALL strmm( 'R', 'U', 'N', 'N', m, l, one, v( kp, 1 ), ldv,
798  $ work( 1, kp ), ldwork )
799  DO j = 1, l
800  DO i = 1, m
801  b( i, j ) = b( i, j ) - work( i, k-l+j )
802  END DO
803  END DO
804 *
805  END IF
806 *
807  RETURN
808 *
809 * End of STPRFB
810 *
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:189
subroutine strmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
STRMM
Definition: strmm.f:179
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: