166 SUBROUTINE sdrvge( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
167 $ a, afac, asav, b, bsav, x, xact, s, work,
168 $ rwork, iwork, nout )
177 INTEGER nmax, nn, nout, nrhs
182 INTEGER iwork( * ), nval( * )
183 REAL a( * ), afac( * ), asav( * ), b( * ),
184 $ bsav( * ), rwork( * ), s( * ), work( * ),
192 parameter ( one = 1.0e+0, zero = 0.0e+0 )
194 parameter ( ntypes = 11 )
196 parameter ( ntests = 7 )
198 parameter ( ntran = 3 )
201 LOGICAL equil, nofact, prefac, trfcon, zerot
202 CHARACTER dist, equed, fact, trans,
TYPE, xtype
204 INTEGER i, iequed, ifact, imat, in, info, ioff, itran,
205 $ izero, k, k1, kl, ku, lda, lwork, mode, n, nb,
206 $ nbmin, nerrs, nfact, nfail, nimat, nrun, nt,
208 REAL ainvnm, amax, anorm, anormi, anormo, cndnum,
209 $ colcnd, rcond, rcondc, rcondi, rcondo, roldc,
210 $ roldi, roldo, rowcnd, rpvgrw, rpvgrw_svxx
213 CHARACTER equeds( 4 ), facts( 3 ), transs( ntran )
214 INTEGER iseed( 4 ), iseedy( 4 )
215 REAL result( ntests ), berr( nrhs ),
216 $ errbnds_n( nrhs, 3 ), errbnds_c( nrhs, 3 )
239 COMMON / infoc / infot, nunit, ok, lerr
240 COMMON / srnamc / srnamt
243 DATA iseedy / 1988, 1989, 1990, 1991 /
244 DATA transs /
'N',
'T',
'C' /
245 DATA facts /
'F',
'N',
'E' /
246 DATA equeds /
'N',
'R',
'C',
'B' /
252 path( 1: 1 ) =
'Single precision'
258 iseed( i ) = iseedy( i )
264 $
CALL serrvx( path, nout )
284 DO 80 imat = 1, nimat
288 IF( .NOT.dotype( imat ) )
293 zerot = imat.GE.5 .AND. imat.LE.7
294 IF( zerot .AND. n.LT.imat-4 )
300 CALL slatb4( path, imat, n, n,
TYPE, kl, ku, anorm, mode,
302 rcondc = one / cndnum
305 CALL slatms( n, n, dist, iseed,
TYPE, rwork, mode, cndnum,
306 $ anorm, kl, ku,
'No packing', a, lda, work,
312 CALL alaerh( path,
'SLATMS', info, 0,
' ', n, n, -1, -1,
313 $ -1, imat, nfail, nerrs, nout )
323 ELSE IF( imat.EQ.6 )
THEN
328 ioff = ( izero-1 )*lda
334 CALL slaset(
'Full', n, n-izero+1, zero, zero,
343 CALL slacpy(
'Full', n, n, a, lda, asav, lda )
346 equed = equeds( iequed )
347 IF( iequed.EQ.1 )
THEN
353 DO 60 ifact = 1, nfact
354 fact = facts( ifact )
355 prefac =
lsame( fact,
'F' )
356 nofact =
lsame( fact,
'N' )
357 equil =
lsame( fact,
'E' )
365 ELSE IF( .NOT.nofact )
THEN
372 CALL slacpy(
'Full', n, n, asav, lda, afac, lda )
373 IF( equil .OR. iequed.GT.1 )
THEN
378 CALL sgeequ( n, n, afac, lda, s, s( n+1 ),
379 $ rowcnd, colcnd, amax, info )
380 IF( info.EQ.0 .AND. n.GT.0 )
THEN
381 IF(
lsame( equed,
'R' ) )
THEN
384 ELSE IF(
lsame( equed,
'C' ) )
THEN
387 ELSE IF(
lsame( equed,
'B' ) )
THEN
394 CALL slaqge( n, n, afac, lda, s, s( n+1 ),
395 $ rowcnd, colcnd, amax, equed )
409 anormo =
slange(
'1', n, n, afac, lda, rwork )
410 anormi =
slange(
'I', n, n, afac, lda, rwork )
414 CALL sgetrf( n, n, afac, lda, iwork, info )
418 CALL slacpy(
'Full', n, n, afac, lda, a, lda )
419 lwork = nmax*max( 3, nrhs )
420 CALL sgetri( n, a, lda, iwork, work, lwork, info )
424 ainvnm =
slange(
'1', n, n, a, lda, rwork )
425 IF( anormo.LE.zero .OR. ainvnm.LE.zero )
THEN
428 rcondo = ( one / anormo ) / ainvnm
433 ainvnm =
slange(
'I', n, n, a, lda, rwork )
434 IF( anormi.LE.zero .OR. ainvnm.LE.zero )
THEN
437 rcondi = ( one / anormi ) / ainvnm
441 DO 50 itran = 1, ntran
445 trans = transs( itran )
446 IF( itran.EQ.1 )
THEN
454 CALL slacpy(
'Full', n, n, asav, lda, a, lda )
459 CALL slarhs( path, xtype,
'Full', trans, n, n, kl,
460 $ ku, nrhs, a, lda, xact, lda, b, lda,
463 CALL slacpy(
'Full', n, nrhs, b, lda, bsav, lda )
465 IF( nofact .AND. itran.EQ.1 )
THEN
472 CALL slacpy(
'Full', n, n, a, lda, afac, lda )
473 CALL slacpy(
'Full', n, nrhs, b, lda, x, lda )
476 CALL sgesv( n, nrhs, afac, lda, iwork, x, lda,
482 $
CALL alaerh( path,
'SGESV ', info, izero,
483 $
' ', n, n, -1, -1, nrhs, imat,
484 $ nfail, nerrs, nout )
489 CALL sget01( n, n, a, lda, afac, lda, iwork,
490 $ rwork, result( 1 ) )
492 IF( izero.EQ.0 )
THEN
496 CALL slacpy(
'Full', n, nrhs, b, lda, work,
498 CALL sget02(
'No transpose', n, n, nrhs, a,
499 $ lda, x, lda, work, lda, rwork,
504 CALL sget04( n, nrhs, x, lda, xact, lda,
505 $ rcondc, result( 3 ) )
513 IF( result( k ).GE.thresh )
THEN
514 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
515 $
CALL aladhd( nout, path )
516 WRITE( nout, fmt = 9999 )
'SGESV ', n,
517 $ imat, k, result( k )
527 $
CALL slaset(
'Full', n, n, zero, zero, afac,
529 CALL slaset(
'Full', n, nrhs, zero, zero, x, lda )
530 IF( iequed.GT.1 .AND. n.GT.0 )
THEN
535 CALL slaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
536 $ colcnd, amax, equed )
543 CALL sgesvx( fact, trans, n, nrhs, a, lda, afac,
544 $ lda, iwork, equed, s, s( n+1 ), b,
545 $ lda, x, lda, rcond, rwork,
546 $ rwork( nrhs+1 ), work, iwork( n+1 ),
552 $
CALL alaerh( path,
'SGESVX', info, izero,
553 $ fact // trans, n, n, -1, -1, nrhs,
554 $ imat, nfail, nerrs, nout )
560 rpvgrw =
slantr(
'M',
'U',
'N', info, info,
562 IF( rpvgrw.EQ.zero )
THEN
565 rpvgrw =
slange(
'M', n, info, a, lda,
569 rpvgrw =
slantr(
'M',
'U',
'N', n, n, afac, lda,
571 IF( rpvgrw.EQ.zero )
THEN
574 rpvgrw =
slange(
'M', n, n, a, lda, work ) /
578 result( 7 ) = abs( rpvgrw-work( 1 ) ) /
579 $ max( work( 1 ), rpvgrw ) /
582 IF( .NOT.prefac )
THEN
587 CALL sget01( n, n, a, lda, afac, lda, iwork,
588 $ rwork( 2*nrhs+1 ), result( 1 ) )
599 CALL slacpy(
'Full', n, nrhs, bsav, lda, work,
601 CALL sget02( trans, n, n, nrhs, asav, lda, x,
602 $ lda, work, lda, rwork( 2*nrhs+1 ),
607 IF( nofact .OR. ( prefac .AND.
lsame( equed,
609 CALL sget04( n, nrhs, x, lda, xact, lda,
610 $ rcondc, result( 3 ) )
612 IF( itran.EQ.1 )
THEN
617 CALL sget04( n, nrhs, x, lda, xact, lda,
618 $ roldc, result( 3 ) )
624 CALL sget07( trans, n, nrhs, asav, lda, b, lda,
625 $ x, lda, xact, lda, rwork, .true.,
626 $ rwork( nrhs+1 ), result( 4 ) )
634 result( 6 ) =
sget06( rcond, rcondc )
639 IF( .NOT.trfcon )
THEN
641 IF( result( k ).GE.thresh )
THEN
642 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
643 $
CALL aladhd( nout, path )
645 WRITE( nout, fmt = 9997 )
'SGESVX',
646 $ fact, trans, n, equed, imat, k,
649 WRITE( nout, fmt = 9998 )
'SGESVX',
650 $ fact, trans, n, imat, k, result( k )
657 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
659 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
660 $
CALL aladhd( nout, path )
662 WRITE( nout, fmt = 9997 )
'SGESVX', fact,
663 $ trans, n, equed, imat, 1, result( 1 )
665 WRITE( nout, fmt = 9998 )
'SGESVX', fact,
666 $ trans, n, imat, 1, result( 1 )
671 IF( result( 6 ).GE.thresh )
THEN
672 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
673 $
CALL aladhd( nout, path )
675 WRITE( nout, fmt = 9997 )
'SGESVX', fact,
676 $ trans, n, equed, imat, 6, result( 6 )
678 WRITE( nout, fmt = 9998 )
'SGESVX', fact,
679 $ trans, n, imat, 6, result( 6 )
684 IF( result( 7 ).GE.thresh )
THEN
685 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
686 $
CALL aladhd( nout, path )
688 WRITE( nout, fmt = 9997 )
'SGESVX', fact,
689 $ trans, n, equed, imat, 7, result( 7 )
691 WRITE( nout, fmt = 9998 )
'SGESVX', fact,
692 $ trans, n, imat, 7, result( 7 )
704 CALL slacpy(
'Full', n, n, asav, lda, a, lda )
705 CALL slacpy(
'Full', n, nrhs, bsav, lda, b, lda )
708 $
CALL slaset(
'Full', n, n, zero, zero, afac,
710 CALL slaset(
'Full', n, nrhs, zero, zero, x, lda )
711 IF( iequed.GT.1 .AND. n.GT.0 )
THEN
716 CALL slaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
717 $ colcnd, amax, equed )
725 CALL sgesvxx( fact, trans, n, nrhs, a, lda, afac,
726 $ lda, iwork, equed, s, s( n+1 ), b, lda, x,
727 $ lda, rcond, rpvgrw_svxx, berr, n_err_bnds,
728 $ errbnds_n, errbnds_c, 0, zero, work,
729 $ iwork( n+1 ), info )
733 IF( info.EQ.n+1 )
GOTO 50
734 IF( info.NE.izero )
THEN
735 CALL alaerh( path,
'SGESVXX', info, izero,
736 $ fact // trans, n, n, -1, -1, nrhs,
737 $ imat, nfail, nerrs, nout )
745 IF ( info .GT. 0 .AND. info .LT. n+1 )
THEN
747 $ (n, info, a, lda, afac, lda)
750 $ (n, n, a, lda, afac, lda)
753 result( 7 ) = abs( rpvgrw-rpvgrw_svxx ) /
754 $ max( rpvgrw_svxx, rpvgrw ) /
757 IF( .NOT.prefac )
THEN
762 CALL sget01( n, n, a, lda, afac, lda, iwork,
763 $ rwork( 2*nrhs+1 ), result( 1 ) )
774 CALL slacpy(
'Full', n, nrhs, bsav, lda, work,
776 CALL sget02( trans, n, n, nrhs, asav, lda, x,
777 $ lda, work, lda, rwork( 2*nrhs+1 ),
782 IF( nofact .OR. ( prefac .AND.
lsame( equed,
784 CALL sget04( n, nrhs, x, lda, xact, lda,
785 $ rcondc, result( 3 ) )
787 IF( itran.EQ.1 )
THEN
792 CALL sget04( n, nrhs, x, lda, xact, lda,
793 $ roldc, result( 3 ) )
802 result( 6 ) =
sget06( rcond, rcondc )
807 IF( .NOT.trfcon )
THEN
809 IF( result( k ).GE.thresh )
THEN
810 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
811 $
CALL aladhd( nout, path )
813 WRITE( nout, fmt = 9997 )
'SGESVXX',
814 $ fact, trans, n, equed, imat, k,
817 WRITE( nout, fmt = 9998 )
'SGESVXX',
818 $ fact, trans, n, imat, k, result( k )
825 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
827 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
828 $
CALL aladhd( nout, path )
830 WRITE( nout, fmt = 9997 )
'SGESVXX', fact,
831 $ trans, n, equed, imat, 1, result( 1 )
833 WRITE( nout, fmt = 9998 )
'SGESVXX', fact,
834 $ trans, n, imat, 1, result( 1 )
839 IF( result( 6 ).GE.thresh )
THEN
840 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
841 $
CALL aladhd( nout, path )
843 WRITE( nout, fmt = 9997 )
'SGESVXX', fact,
844 $ trans, n, equed, imat, 6, result( 6 )
846 WRITE( nout, fmt = 9998 )
'SGESVXX', fact,
847 $ trans, n, imat, 6, result( 6 )
852 IF( result( 7 ).GE.thresh )
THEN
853 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
854 $
CALL aladhd( nout, path )
856 WRITE( nout, fmt = 9997 )
'SGESVXX', fact,
857 $ trans, n, equed, imat, 7, result( 7 )
859 WRITE( nout, fmt = 9998 )
'SGESVXX', fact,
860 $ trans, n, imat, 7, result( 7 )
876 CALL alasvm( path, nout, nfail, nrun, nerrs )
883 9999
FORMAT( 1x, a,
', N =', i5,
', type ', i2,
', test(', i2,
') =',
885 9998
FORMAT( 1x, a,
', FACT=''', a1,
''', TRANS=''', a1,
''', N=', i5,
886 $
', type ', i2,
', test(', i1,
')=', g12.5 )
887 9997
FORMAT( 1x, a,
', FACT=''', a1,
''', TRANS=''', a1,
''', N=', i5,
888 $
', EQUED=''', a1,
''', type ', i2,
', test(', i1,
')=',
subroutine slaqge(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED)
SLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ...
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
real function sla_gerpvgrw(N, NCOLS, A, LDA, AF, LDAF)
SLA_GERPVGRW
subroutine sget07(TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
SGET07
subroutine sget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
SGET02
subroutine sgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
SGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) ...
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
subroutine sebchvxx(THRESH, PATH)
SEBCHVXX
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
subroutine sdrvge(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
SDRVGE
real function sget06(RCOND, RCONDC)
SGET06
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
subroutine sgesvx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SGESVX computes the solution to system of linear equations A * X = B for GE matrices ...
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
subroutine sgetrf(M, N, A, LDA, IPIV, INFO)
SGETRF
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
subroutine sgesvxx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO)
SGESVXX computes the solution to system of linear equations A * X = B for GE matrices ...
subroutine aladhd(IOUNIT, PATH)
ALADHD
subroutine sget01(M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
SGET01
real function slantr(NORM, UPLO, DIAG, M, N, A, LDA, WORK)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
subroutine serrvx(PATH, NUNIT)
SERRVX
subroutine sgeequ(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)
SGEEQU
real function slamch(CMACH)
SLAMCH
subroutine sgetri(N, A, LDA, IPIV, WORK, LWORK, INFO)
SGETRI
logical function lsame(CA, CB)
LSAME