LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine dgbsvx ( character  FACT,
character  TRANS,
integer  N,
integer  KL,
integer  KU,
integer  NRHS,
double precision, dimension( ldab, * )  AB,
integer  LDAB,
double precision, dimension( ldafb, * )  AFB,
integer  LDAFB,
integer, dimension( * )  IPIV,
character  EQUED,
double precision, dimension( * )  R,
double precision, dimension( * )  C,
double precision, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( ldx, * )  X,
integer  LDX,
double precision  RCOND,
double precision, dimension( * )  FERR,
double precision, dimension( * )  BERR,
double precision, dimension( * )  WORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

DGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Download DGBSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGBSVX uses the LU factorization to compute the solution to a real
 system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
 where A is a band matrix of order N with KL subdiagonals and KU
 superdiagonals, and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are also
 provided.
Description:
 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
    or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
    matrix A (after equilibration if FACT = 'E') as
       A = L * U,
    where L is a product of permutation and unit lower triangular
    matrices with KL subdiagonals, and U is upper triangular with
    KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.

 4. The system of equations is solved for X using the factored form
    of A.

 5. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.

 6. If equilibration was used, the matrix X is premultiplied by
    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
    that it solves the original system before equilibration.
Parameters
[in]FACT
          FACT is CHARACTER*1
          Specifies whether or not the factored form of the matrix A is
          supplied on entry, and if not, whether the matrix A should be
          equilibrated before it is factored.
          = 'F':  On entry, AFB and IPIV contain the factored form of
                  A.  If EQUED is not 'N', the matrix A has been
                  equilibrated with scaling factors given by R and C.
                  AB, AFB, and IPIV are not modified.
          = 'N':  The matrix A will be copied to AFB and factored.
          = 'E':  The matrix A will be equilibrated if necessary, then
                  copied to AFB and factored.
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Transpose)
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in,out]AB
          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

          If FACT = 'F' and EQUED is not 'N', then A must have been
          equilibrated by the scaling factors in R and/or C.  AB is not
          modified if FACT = 'F' or 'N', or if FACT = 'E' and
          EQUED = 'N' on exit.

          On exit, if EQUED .ne. 'N', A is scaled as follows:
          EQUED = 'R':  A := diag(R) * A
          EQUED = 'C':  A := A * diag(C)
          EQUED = 'B':  A := diag(R) * A * diag(C).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.
[in,out]AFB
          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
          If FACT = 'F', then AFB is an input argument and on entry
          contains details of the LU factorization of the band matrix
          A, as computed by DGBTRF.  U is stored as an upper triangular
          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
          and the multipliers used during the factorization are stored
          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
          the factored form of the equilibrated matrix A.

          If FACT = 'N', then AFB is an output argument and on exit
          returns details of the LU factorization of A.

          If FACT = 'E', then AFB is an output argument and on exit
          returns details of the LU factorization of the equilibrated
          matrix A (see the description of AB for the form of the
          equilibrated matrix).
[in]LDAFB
          LDAFB is INTEGER
          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
[in,out]IPIV
          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains the pivot indices from the factorization A = L*U
          as computed by DGBTRF; row i of the matrix was interchanged
          with row IPIV(i).

          If FACT = 'N', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the original matrix A.

          If FACT = 'E', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the equilibrated matrix A.
[in,out]EQUED
          EQUED is CHARACTER*1
          Specifies the form of equilibration that was done.
          = 'N':  No equilibration (always true if FACT = 'N').
          = 'R':  Row equilibration, i.e., A has been premultiplied by
                  diag(R).
          = 'C':  Column equilibration, i.e., A has been postmultiplied
                  by diag(C).
          = 'B':  Both row and column equilibration, i.e., A has been
                  replaced by diag(R) * A * diag(C).
          EQUED is an input argument if FACT = 'F'; otherwise, it is an
          output argument.
[in,out]R
          R is DOUBLE PRECISION array, dimension (N)
          The row scale factors for A.  If EQUED = 'R' or 'B', A is
          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
          is not accessed.  R is an input argument if FACT = 'F';
          otherwise, R is an output argument.  If FACT = 'F' and
          EQUED = 'R' or 'B', each element of R must be positive.
[in,out]C
          C is DOUBLE PRECISION array, dimension (N)
          The column scale factors for A.  If EQUED = 'C' or 'B', A is
          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
          is not accessed.  C is an input argument if FACT = 'F';
          otherwise, C is an output argument.  If FACT = 'F' and
          EQUED = 'C' or 'B', each element of C must be positive.
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit,
          if EQUED = 'N', B is not modified;
          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
          diag(R)*B;
          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
          overwritten by diag(C)*B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
          to the original system of equations.  Note that A and B are
          modified on exit if EQUED .ne. 'N', and the solution to the
          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
          and EQUED = 'R' or 'B'.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A after equilibration (if done).  If RCOND is less than the
          machine precision (in particular, if RCOND = 0), the matrix
          is singular to working precision.  This condition is
          indicated by a return code of INFO > 0.
[out]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (3*N)
          On exit, WORK(1) contains the reciprocal pivot growth
          factor norm(A)/norm(U). The "max absolute element" norm is
          used. If WORK(1) is much less than 1, then the stability
          of the LU factorization of the (equilibrated) matrix A
          could be poor. This also means that the solution X, condition
          estimator RCOND, and forward error bound FERR could be
          unreliable. If factorization fails with 0<INFO<=N, then
          WORK(1) contains the reciprocal pivot growth factor for the
          leading INFO columns of A.
[out]IWORK
          IWORK is INTEGER array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  U(i,i) is exactly zero.  The factorization
                       has been completed, but the factor U is exactly
                       singular, so the solution and error bounds
                       could not be computed. RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
April 2012

Definition at line 371 of file dgbsvx.f.

371 *
372 * -- LAPACK driver routine (version 3.4.1) --
373 * -- LAPACK is a software package provided by Univ. of Tennessee, --
374 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
375 * April 2012
376 *
377 * .. Scalar Arguments ..
378  CHARACTER equed, fact, trans
379  INTEGER info, kl, ku, ldab, ldafb, ldb, ldx, n, nrhs
380  DOUBLE PRECISION rcond
381 * ..
382 * .. Array Arguments ..
383  INTEGER ipiv( * ), iwork( * )
384  DOUBLE PRECISION ab( ldab, * ), afb( ldafb, * ), b( ldb, * ),
385  $ berr( * ), c( * ), ferr( * ), r( * ),
386  $ work( * ), x( ldx, * )
387 * ..
388 *
389 * =====================================================================
390 *
391 * .. Parameters ..
392  DOUBLE PRECISION zero, one
393  parameter ( zero = 0.0d+0, one = 1.0d+0 )
394 * ..
395 * .. Local Scalars ..
396  LOGICAL colequ, equil, nofact, notran, rowequ
397  CHARACTER norm
398  INTEGER i, infequ, j, j1, j2
399  DOUBLE PRECISION amax, anorm, bignum, colcnd, rcmax, rcmin,
400  $ rowcnd, rpvgrw, smlnum
401 * ..
402 * .. External Functions ..
403  LOGICAL lsame
404  DOUBLE PRECISION dlamch, dlangb, dlantb
405  EXTERNAL lsame, dlamch, dlangb, dlantb
406 * ..
407 * .. External Subroutines ..
408  EXTERNAL dcopy, dgbcon, dgbequ, dgbrfs, dgbtrf, dgbtrs,
409  $ dlacpy, dlaqgb, xerbla
410 * ..
411 * .. Intrinsic Functions ..
412  INTRINSIC abs, max, min
413 * ..
414 * .. Executable Statements ..
415 *
416  info = 0
417  nofact = lsame( fact, 'N' )
418  equil = lsame( fact, 'E' )
419  notran = lsame( trans, 'N' )
420  IF( nofact .OR. equil ) THEN
421  equed = 'N'
422  rowequ = .false.
423  colequ = .false.
424  ELSE
425  rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
426  colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
427  smlnum = dlamch( 'Safe minimum' )
428  bignum = one / smlnum
429  END IF
430 *
431 * Test the input parameters.
432 *
433  IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
434  $ THEN
435  info = -1
436  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
437  $ lsame( trans, 'C' ) ) THEN
438  info = -2
439  ELSE IF( n.LT.0 ) THEN
440  info = -3
441  ELSE IF( kl.LT.0 ) THEN
442  info = -4
443  ELSE IF( ku.LT.0 ) THEN
444  info = -5
445  ELSE IF( nrhs.LT.0 ) THEN
446  info = -6
447  ELSE IF( ldab.LT.kl+ku+1 ) THEN
448  info = -8
449  ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
450  info = -10
451  ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
452  $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
453  info = -12
454  ELSE
455  IF( rowequ ) THEN
456  rcmin = bignum
457  rcmax = zero
458  DO 10 j = 1, n
459  rcmin = min( rcmin, r( j ) )
460  rcmax = max( rcmax, r( j ) )
461  10 CONTINUE
462  IF( rcmin.LE.zero ) THEN
463  info = -13
464  ELSE IF( n.GT.0 ) THEN
465  rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
466  ELSE
467  rowcnd = one
468  END IF
469  END IF
470  IF( colequ .AND. info.EQ.0 ) THEN
471  rcmin = bignum
472  rcmax = zero
473  DO 20 j = 1, n
474  rcmin = min( rcmin, c( j ) )
475  rcmax = max( rcmax, c( j ) )
476  20 CONTINUE
477  IF( rcmin.LE.zero ) THEN
478  info = -14
479  ELSE IF( n.GT.0 ) THEN
480  colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
481  ELSE
482  colcnd = one
483  END IF
484  END IF
485  IF( info.EQ.0 ) THEN
486  IF( ldb.LT.max( 1, n ) ) THEN
487  info = -16
488  ELSE IF( ldx.LT.max( 1, n ) ) THEN
489  info = -18
490  END IF
491  END IF
492  END IF
493 *
494  IF( info.NE.0 ) THEN
495  CALL xerbla( 'DGBSVX', -info )
496  RETURN
497  END IF
498 *
499  IF( equil ) THEN
500 *
501 * Compute row and column scalings to equilibrate the matrix A.
502 *
503  CALL dgbequ( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
504  $ amax, infequ )
505  IF( infequ.EQ.0 ) THEN
506 *
507 * Equilibrate the matrix.
508 *
509  CALL dlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
510  $ amax, equed )
511  rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
512  colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
513  END IF
514  END IF
515 *
516 * Scale the right hand side.
517 *
518  IF( notran ) THEN
519  IF( rowequ ) THEN
520  DO 40 j = 1, nrhs
521  DO 30 i = 1, n
522  b( i, j ) = r( i )*b( i, j )
523  30 CONTINUE
524  40 CONTINUE
525  END IF
526  ELSE IF( colequ ) THEN
527  DO 60 j = 1, nrhs
528  DO 50 i = 1, n
529  b( i, j ) = c( i )*b( i, j )
530  50 CONTINUE
531  60 CONTINUE
532  END IF
533 *
534  IF( nofact .OR. equil ) THEN
535 *
536 * Compute the LU factorization of the band matrix A.
537 *
538  DO 70 j = 1, n
539  j1 = max( j-ku, 1 )
540  j2 = min( j+kl, n )
541  CALL dcopy( j2-j1+1, ab( ku+1-j+j1, j ), 1,
542  $ afb( kl+ku+1-j+j1, j ), 1 )
543  70 CONTINUE
544 *
545  CALL dgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
546 *
547 * Return if INFO is non-zero.
548 *
549  IF( info.GT.0 ) THEN
550 *
551 * Compute the reciprocal pivot growth factor of the
552 * leading rank-deficient INFO columns of A.
553 *
554  anorm = zero
555  DO 90 j = 1, info
556  DO 80 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
557  anorm = max( anorm, abs( ab( i, j ) ) )
558  80 CONTINUE
559  90 CONTINUE
560  rpvgrw = dlantb( 'M', 'U', 'N', info, min( info-1, kl+ku ),
561  $ afb( max( 1, kl+ku+2-info ), 1 ), ldafb,
562  $ work )
563  IF( rpvgrw.EQ.zero ) THEN
564  rpvgrw = one
565  ELSE
566  rpvgrw = anorm / rpvgrw
567  END IF
568  work( 1 ) = rpvgrw
569  rcond = zero
570  RETURN
571  END IF
572  END IF
573 *
574 * Compute the norm of the matrix A and the
575 * reciprocal pivot growth factor RPVGRW.
576 *
577  IF( notran ) THEN
578  norm = '1'
579  ELSE
580  norm = 'I'
581  END IF
582  anorm = dlangb( norm, n, kl, ku, ab, ldab, work )
583  rpvgrw = dlantb( 'M', 'U', 'N', n, kl+ku, afb, ldafb, work )
584  IF( rpvgrw.EQ.zero ) THEN
585  rpvgrw = one
586  ELSE
587  rpvgrw = dlangb( 'M', n, kl, ku, ab, ldab, work ) / rpvgrw
588  END IF
589 *
590 * Compute the reciprocal of the condition number of A.
591 *
592  CALL dgbcon( norm, n, kl, ku, afb, ldafb, ipiv, anorm, rcond,
593  $ work, iwork, info )
594 *
595 * Compute the solution matrix X.
596 *
597  CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
598  CALL dgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
599  $ info )
600 *
601 * Use iterative refinement to improve the computed solution and
602 * compute error bounds and backward error estimates for it.
603 *
604  CALL dgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
605  $ b, ldb, x, ldx, ferr, berr, work, iwork, info )
606 *
607 * Transform the solution matrix X to a solution of the original
608 * system.
609 *
610  IF( notran ) THEN
611  IF( colequ ) THEN
612  DO 110 j = 1, nrhs
613  DO 100 i = 1, n
614  x( i, j ) = c( i )*x( i, j )
615  100 CONTINUE
616  110 CONTINUE
617  DO 120 j = 1, nrhs
618  ferr( j ) = ferr( j ) / colcnd
619  120 CONTINUE
620  END IF
621  ELSE IF( rowequ ) THEN
622  DO 140 j = 1, nrhs
623  DO 130 i = 1, n
624  x( i, j ) = r( i )*x( i, j )
625  130 CONTINUE
626  140 CONTINUE
627  DO 150 j = 1, nrhs
628  ferr( j ) = ferr( j ) / rowcnd
629  150 CONTINUE
630  END IF
631 *
632 * Set INFO = N+1 if the matrix is singular to working precision.
633 *
634  IF( rcond.LT.dlamch( 'Epsilon' ) )
635  $ info = n + 1
636 *
637  work( 1 ) = rpvgrw
638  RETURN
639 *
640 * End of DGBSVX
641 *
subroutine dgbrfs(TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)
DGBRFS
Definition: dgbrfs.f:207
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:105
subroutine dlaqgb(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, EQUED)
DLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ...
Definition: dlaqgb.f:161
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine dgbequ(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO)
DGBEQU
Definition: dgbequ.f:155
double precision function dlangb(NORM, N, KL, KU, AB, LDAB, WORK)
DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: dlangb.f:126
subroutine dgbtrf(M, N, KL, KU, AB, LDAB, IPIV, INFO)
DGBTRF
Definition: dgbtrf.f:146
double precision function dlantb(NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
Definition: dlantb.f:142
subroutine dgbcon(NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND, WORK, IWORK, INFO)
DGBCON
Definition: dgbcon.f:148
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine dgbtrs(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
DGBTRS
Definition: dgbtrs.f:140

Here is the call graph for this function:

Here is the caller graph for this function: