LAPACK
3.6.1
LAPACK: Linear Algebra PACKage
|
subroutine zgerq2 | ( | integer | M, |
integer | N, | ||
complex*16, dimension( lda, * ) | A, | ||
integer | LDA, | ||
complex*16, dimension( * ) | TAU, | ||
complex*16, dimension( * ) | WORK, | ||
integer | INFO | ||
) |
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.
Download ZGERQ2 + dependencies [TGZ] [ZIP] [TXT]
ZGERQ2 computes an RQ factorization of a complex m by n matrix A: A = R * Q.
[in] | M | M is INTEGER The number of rows of the matrix A. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix A. N >= 0. |
[in,out] | A | A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the unitary matrix Q as a product of elementary reflectors (see Further Details). |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | TAU | TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details). |
[out] | WORK | WORK is COMPLEX*16 array, dimension (M) |
[out] | INFO | INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value |
The matrix Q is represented as a product of elementary reflectors Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**H where tau is a complex scalar, and v is a complex vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
Definition at line 125 of file zgerq2.f.