LAPACK
3.6.1
LAPACK: Linear Algebra PACKage
|
subroutine dlatrz | ( | integer | M, |
integer | N, | ||
integer | L, | ||
double precision, dimension( lda, * ) | A, | ||
integer | LDA, | ||
double precision, dimension( * ) | TAU, | ||
double precision, dimension( * ) | WORK | ||
) |
DLATRZ factors an upper trapezoidal matrix by means of orthogonal transformations.
Download DLATRZ + dependencies [TGZ] [ZIP] [TXT]
DLATRZ factors the M-by-(M+L) real upper trapezoidal matrix [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z, by means of orthogonal transformations. Z is an (M+L)-by-(M+L) orthogonal matrix and, R and A1 are M-by-M upper triangular matrices.
[in] | M | M is INTEGER The number of rows of the matrix A. M >= 0. |
[in] | N | N is INTEGER The number of columns of the matrix A. N >= 0. |
[in] | L | L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder vectors. N-M >= L >= 0. |
[in,out] | A | A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements N-L+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors. |
[in] | LDA | LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). |
[out] | TAU | TAU is DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors. |
[out] | WORK | WORK is DOUBLE PRECISION array, dimension (M) |
The factorization is obtained by Householder's method. The kth transformation matrix, Z( k ), which is used to introduce zeros into the ( m - k + 1 )th row of A, is given in the form Z( k ) = ( I 0 ), ( 0 T( k ) ) where T( k ) = I - tau*u( k )*u( k )**T, u( k ) = ( 1 ), ( 0 ) ( z( k ) ) tau is a scalar and z( k ) is an l element vector. tau and z( k ) are chosen to annihilate the elements of the kth row of A2. The scalar tau is returned in the kth element of TAU and the vector u( k ) in the kth row of A2, such that the elements of z( k ) are in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in the upper triangular part of A1. Z is given by Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
Definition at line 142 of file dlatrz.f.