LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine slarzt ( character  DIRECT,
character  STOREV,
integer  N,
integer  K,
real, dimension( ldv, * )  V,
integer  LDV,
real, dimension( * )  TAU,
real, dimension( ldt, * )  T,
integer  LDT 
)

SLARZT forms the triangular factor T of a block reflector H = I - vtvH.

Download SLARZT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLARZT forms the triangular factor T of a real block reflector
 H of order > n, which is defined as a product of k elementary
 reflectors.

 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;

 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.

 If STOREV = 'C', the vector which defines the elementary reflector
 H(i) is stored in the i-th column of the array V, and

    H  =  I - V * T * V**T

 If STOREV = 'R', the vector which defines the elementary reflector
 H(i) is stored in the i-th row of the array V, and

    H  =  I - V**T * T * V

 Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
Parameters
[in]DIRECT
          DIRECT is CHARACTER*1
          Specifies the order in which the elementary reflectors are
          multiplied to form the block reflector:
          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
          = 'B': H = H(k) . . . H(2) H(1) (Backward)
[in]STOREV
          STOREV is CHARACTER*1
          Specifies how the vectors which define the elementary
          reflectors are stored (see also Further Details):
          = 'C': columnwise                        (not supported yet)
          = 'R': rowwise
[in]N
          N is INTEGER
          The order of the block reflector H. N >= 0.
[in]K
          K is INTEGER
          The order of the triangular factor T (= the number of
          elementary reflectors). K >= 1.
[in,out]V
          V is REAL array, dimension
                               (LDV,K) if STOREV = 'C'
                               (LDV,N) if STOREV = 'R'
          The matrix V. See further details.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
[in]TAU
          TAU is REAL array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i).
[out]T
          T is REAL array, dimension (LDT,K)
          The k by k triangular factor T of the block reflector.
          If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
          lower triangular. The rest of the array is not used.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T. LDT >= K.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012
Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
  The shape of the matrix V and the storage of the vectors which define
  the H(i) is best illustrated by the following example with n = 5 and
  k = 3. The elements equal to 1 are not stored; the corresponding
  array elements are modified but restored on exit. The rest of the
  array is not used.

  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':

                                              ______V_____
         ( v1 v2 v3 )                        /            \
         ( v1 v2 v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
     V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
         ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
         ( v1 v2 v3 )
            .  .  .
            .  .  .
            1  .  .
               1  .
                  1

  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':

                                                        ______V_____
            1                                          /            \
            .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
            .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
            .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
            .  .  .
         ( v1 v2 v3 )
         ( v1 v2 v3 )
     V = ( v1 v2 v3 )
         ( v1 v2 v3 )
         ( v1 v2 v3 )

Definition at line 187 of file slarzt.f.

187 *
188 * -- LAPACK computational routine (version 3.4.2) --
189 * -- LAPACK is a software package provided by Univ. of Tennessee, --
190 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191 * September 2012
192 *
193 * .. Scalar Arguments ..
194  CHARACTER direct, storev
195  INTEGER k, ldt, ldv, n
196 * ..
197 * .. Array Arguments ..
198  REAL t( ldt, * ), tau( * ), v( ldv, * )
199 * ..
200 *
201 * =====================================================================
202 *
203 * .. Parameters ..
204  REAL zero
205  parameter ( zero = 0.0e+0 )
206 * ..
207 * .. Local Scalars ..
208  INTEGER i, info, j
209 * ..
210 * .. External Subroutines ..
211  EXTERNAL sgemv, strmv, xerbla
212 * ..
213 * .. External Functions ..
214  LOGICAL lsame
215  EXTERNAL lsame
216 * ..
217 * .. Executable Statements ..
218 *
219 * Check for currently supported options
220 *
221  info = 0
222  IF( .NOT.lsame( direct, 'B' ) ) THEN
223  info = -1
224  ELSE IF( .NOT.lsame( storev, 'R' ) ) THEN
225  info = -2
226  END IF
227  IF( info.NE.0 ) THEN
228  CALL xerbla( 'SLARZT', -info )
229  RETURN
230  END IF
231 *
232  DO 20 i = k, 1, -1
233  IF( tau( i ).EQ.zero ) THEN
234 *
235 * H(i) = I
236 *
237  DO 10 j = i, k
238  t( j, i ) = zero
239  10 CONTINUE
240  ELSE
241 *
242 * general case
243 *
244  IF( i.LT.k ) THEN
245 *
246 * T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)**T
247 *
248  CALL sgemv( 'No transpose', k-i, n, -tau( i ),
249  $ v( i+1, 1 ), ldv, v( i, 1 ), ldv, zero,
250  $ t( i+1, i ), 1 )
251 *
252 * T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
253 *
254  CALL strmv( 'Lower', 'No transpose', 'Non-unit', k-i,
255  $ t( i+1, i+1 ), ldt, t( i+1, i ), 1 )
256  END IF
257  t( i, i ) = tau( i )
258  END IF
259  20 CONTINUE
260  RETURN
261 *
262 * End of SLARZT
263 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine sgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV
Definition: sgemv.f:158
subroutine strmv(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
STRMV
Definition: strmv.f:149
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: