LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine dorml2 ( character  SIDE,
character  TRANS,
integer  M,
integer  N,
integer  K,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( * )  TAU,
double precision, dimension( ldc, * )  C,
integer  LDC,
double precision, dimension( * )  WORK,
integer  INFO 
)

DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).

Download DORML2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DORML2 overwrites the general real m by n matrix C with

       Q * C  if SIDE = 'L' and TRANS = 'N', or

       Q**T* C  if SIDE = 'L' and TRANS = 'T', or

       C * Q  if SIDE = 'R' and TRANS = 'N', or

       C * Q**T if SIDE = 'R' and TRANS = 'T',

 where Q is a real orthogonal matrix defined as the product of k
 elementary reflectors

       Q = H(k) . . . H(2) H(1)

 as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
 if SIDE = 'R'.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left
          = 'R': apply Q or Q**T from the Right
[in]TRANS
          TRANS is CHARACTER*1
          = 'N': apply Q  (No transpose)
          = 'T': apply Q**T (Transpose)
[in]M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension
                               (LDA,M) if SIDE = 'L',
                               (LDA,N) if SIDE = 'R'
          The i-th row must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          DGELQF in the first k rows of its array argument A.
          A is modified by the routine but restored on exit.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,K).
[in]TAU
          TAU is DOUBLE PRECISION array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by DGELQF.
[in,out]C
          C is DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension
                                   (N) if SIDE = 'L',
                                   (M) if SIDE = 'R'
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 161 of file dorml2.f.

161 *
162 * -- LAPACK computational routine (version 3.4.2) --
163 * -- LAPACK is a software package provided by Univ. of Tennessee, --
164 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165 * September 2012
166 *
167 * .. Scalar Arguments ..
168  CHARACTER side, trans
169  INTEGER info, k, lda, ldc, m, n
170 * ..
171 * .. Array Arguments ..
172  DOUBLE PRECISION a( lda, * ), c( ldc, * ), tau( * ), work( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  DOUBLE PRECISION one
179  parameter ( one = 1.0d+0 )
180 * ..
181 * .. Local Scalars ..
182  LOGICAL left, notran
183  INTEGER i, i1, i2, i3, ic, jc, mi, ni, nq
184  DOUBLE PRECISION aii
185 * ..
186 * .. External Functions ..
187  LOGICAL lsame
188  EXTERNAL lsame
189 * ..
190 * .. External Subroutines ..
191  EXTERNAL dlarf, xerbla
192 * ..
193 * .. Intrinsic Functions ..
194  INTRINSIC max
195 * ..
196 * .. Executable Statements ..
197 *
198 * Test the input arguments
199 *
200  info = 0
201  left = lsame( side, 'L' )
202  notran = lsame( trans, 'N' )
203 *
204 * NQ is the order of Q
205 *
206  IF( left ) THEN
207  nq = m
208  ELSE
209  nq = n
210  END IF
211  IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
212  info = -1
213  ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
214  info = -2
215  ELSE IF( m.LT.0 ) THEN
216  info = -3
217  ELSE IF( n.LT.0 ) THEN
218  info = -4
219  ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
220  info = -5
221  ELSE IF( lda.LT.max( 1, k ) ) THEN
222  info = -7
223  ELSE IF( ldc.LT.max( 1, m ) ) THEN
224  info = -10
225  END IF
226  IF( info.NE.0 ) THEN
227  CALL xerbla( 'DORML2', -info )
228  RETURN
229  END IF
230 *
231 * Quick return if possible
232 *
233  IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
234  $ RETURN
235 *
236  IF( ( left .AND. notran ) .OR. ( .NOT.left .AND. .NOT.notran ) )
237  $ THEN
238  i1 = 1
239  i2 = k
240  i3 = 1
241  ELSE
242  i1 = k
243  i2 = 1
244  i3 = -1
245  END IF
246 *
247  IF( left ) THEN
248  ni = n
249  jc = 1
250  ELSE
251  mi = m
252  ic = 1
253  END IF
254 *
255  DO 10 i = i1, i2, i3
256  IF( left ) THEN
257 *
258 * H(i) is applied to C(i:m,1:n)
259 *
260  mi = m - i + 1
261  ic = i
262  ELSE
263 *
264 * H(i) is applied to C(1:m,i:n)
265 *
266  ni = n - i + 1
267  jc = i
268  END IF
269 *
270 * Apply H(i)
271 *
272  aii = a( i, i )
273  a( i, i ) = one
274  CALL dlarf( side, mi, ni, a( i, i ), lda, tau( i ),
275  $ c( ic, jc ), ldc, work )
276  a( i, i ) = aii
277  10 CONTINUE
278  RETURN
279 *
280 * End of DORML2
281 *
subroutine dlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
DLARF applies an elementary reflector to a general rectangular matrix.
Definition: dlarf.f:126
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55

Here is the call graph for this function:

Here is the caller graph for this function: