LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine dla_porfsx_extended ( integer  PREC_TYPE,
character  UPLO,
integer  N,
integer  NRHS,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( ldaf, * )  AF,
integer  LDAF,
logical  COLEQU,
double precision, dimension( * )  C,
double precision, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( ldy, * )  Y,
integer  LDY,
double precision, dimension( * )  BERR_OUT,
integer  N_NORMS,
double precision, dimension( nrhs, * )  ERR_BNDS_NORM,
double precision, dimension( nrhs, * )  ERR_BNDS_COMP,
double precision, dimension( * )  RES,
double precision, dimension(*)  AYB,
double precision, dimension( * )  DY,
double precision, dimension( * )  Y_TAIL,
double precision  RCOND,
integer  ITHRESH,
double precision  RTHRESH,
double precision  DZ_UB,
logical  IGNORE_CWISE,
integer  INFO 
)

DLA_PORFSX_EXTENDED improves the computed solution to a system of linear equations for symmetric or Hermitian positive-definite matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.

Download DLA_PORFSX_EXTENDED + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLA_PORFSX_EXTENDED improves the computed solution to a system of
 linear equations by performing extra-precise iterative refinement
 and provides error bounds and backward error estimates for the solution.
 This subroutine is called by DPORFSX to perform iterative refinement.
 In addition to normwise error bound, the code provides maximum
 componentwise error bound if possible. See comments for ERR_BNDS_NORM
 and ERR_BNDS_COMP for details of the error bounds. Note that this
 subroutine is only resonsible for setting the second fields of
 ERR_BNDS_NORM and ERR_BNDS_COMP.
Parameters
[in]PREC_TYPE
          PREC_TYPE is INTEGER
     Specifies the intermediate precision to be used in refinement.
     The value is defined by ILAPREC(P) where P is a CHARACTER and
     P    = 'S':  Single
          = 'D':  Double
          = 'I':  Indigenous
          = 'X', 'E':  Extra
[in]UPLO
          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.
[in]NRHS
          NRHS is INTEGER
     The number of right-hand-sides, i.e., the number of columns of the
     matrix B.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
     On entry, the N-by-N matrix A.
[in]LDA
          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).
[in]AF
          AF is DOUBLE PRECISION array, dimension (LDAF,N)
     The triangular factor U or L from the Cholesky factorization
     A = U**T*U or A = L*L**T, as computed by DPOTRF.
[in]LDAF
          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).
[in]COLEQU
          COLEQU is LOGICAL
     If .TRUE. then column equilibration was done to A before calling
     this routine. This is needed to compute the solution and error
     bounds correctly.
[in]C
          C is DOUBLE PRECISION array, dimension (N)
     The column scale factors for A. If COLEQU = .FALSE., C
     is not accessed. If C is input, each element of C should be a power
     of the radix to ensure a reliable solution and error estimates.
     Scaling by powers of the radix does not cause rounding errors unless
     the result underflows or overflows. Rounding errors during scaling
     lead to refining with a matrix that is not equivalent to the
     input matrix, producing error estimates that may not be
     reliable.
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
     The right-hand-side matrix B.
[in]LDB
          LDB is INTEGER
     The leading dimension of the array B.  LDB >= max(1,N).
[in,out]Y
          Y is DOUBLE PRECISION array, dimension
                    (LDY,NRHS)
     On entry, the solution matrix X, as computed by DPOTRS.
     On exit, the improved solution matrix Y.
[in]LDY
          LDY is INTEGER
     The leading dimension of the array Y.  LDY >= max(1,N).
[out]BERR_OUT
          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
     On exit, BERR_OUT(j) contains the componentwise relative backward
     error for right-hand-side j from the formula
         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
     where abs(Z) is the componentwise absolute value of the matrix
     or vector Z. This is computed by DLA_LIN_BERR.
[in]N_NORMS
          N_NORMS is INTEGER
     Determines which error bounds to return (see ERR_BNDS_NORM
     and ERR_BNDS_COMP).
     If N_NORMS >= 1 return normwise error bounds.
     If N_NORMS >= 2 return componentwise error bounds.
[in,out]ERR_BNDS_NORM
          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension
                    (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     normwise relative error, which is defined as follows:

     Normwise relative error in the ith solution vector:
             max_j (abs(XTRUE(j,i) - X(j,i)))
            ------------------------------
                  max_j abs(X(j,i))

     The array is indexed by the type of error information as described
     below. There currently are up to three pieces of information
     returned.

     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_NORM(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated normwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*A, where S scales each row by a power of the
              radix so all absolute row sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in,out]ERR_BNDS_COMP
          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension
                    (NRHS, N_ERR_BNDS)
     For each right-hand side, this array contains information about
     various error bounds and condition numbers corresponding to the
     componentwise relative error, which is defined as follows:

     Componentwise relative error in the ith solution vector:
                    abs(XTRUE(j,i) - X(j,i))
             max_j ----------------------
                         abs(X(j,i))

     The array is indexed by the right-hand side i (on which the
     componentwise relative error depends), and the type of error
     information as described below. There currently are up to three
     pieces of information returned for each right-hand side. If
     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
     the first (:,N_ERR_BNDS) entries are returned.

     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
     right-hand side.

     The second index in ERR_BNDS_COMP(:,err) contains the following
     three fields:
     err = 1 "Trust/don't trust" boolean. Trust the answer if the
              reciprocal condition number is less than the threshold
              sqrt(n) * slamch('Epsilon').

     err = 2 "Guaranteed" error bound: The estimated forward error,
              almost certainly within a factor of 10 of the true error
              so long as the next entry is greater than the threshold
              sqrt(n) * slamch('Epsilon'). This error bound should only
              be trusted if the previous boolean is true.

     err = 3  Reciprocal condition number: Estimated componentwise
              reciprocal condition number.  Compared with the threshold
              sqrt(n) * slamch('Epsilon') to determine if the error
              estimate is "guaranteed". These reciprocal condition
              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
              appropriately scaled matrix Z.
              Let Z = S*(A*diag(x)), where x is the solution for the
              current right-hand side and S scales each row of
              A*diag(x) by a power of the radix so all absolute row
              sums of Z are approximately 1.

     This subroutine is only responsible for setting the second field
     above.
     See Lapack Working Note 165 for further details and extra
     cautions.
[in]RES
          RES is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the intermediate residual.
[in]AYB
          AYB is DOUBLE PRECISION array, dimension (N)
     Workspace. This can be the same workspace passed for Y_TAIL.
[in]DY
          DY is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the intermediate solution.
[in]Y_TAIL
          Y_TAIL is DOUBLE PRECISION array, dimension (N)
     Workspace to hold the trailing bits of the intermediate solution.
[in]RCOND
          RCOND is DOUBLE PRECISION
     Reciprocal scaled condition number.  This is an estimate of the
     reciprocal Skeel condition number of the matrix A after
     equilibration (if done).  If this is less than the machine
     precision (in particular, if it is zero), the matrix is singular
     to working precision.  Note that the error may still be small even
     if this number is very small and the matrix appears ill-
     conditioned.
[in]ITHRESH
          ITHRESH is INTEGER
     The maximum number of residual computations allowed for
     refinement. The default is 10. For 'aggressive' set to 100 to
     permit convergence using approximate factorizations or
     factorizations other than LU. If the factorization uses a
     technique other than Gaussian elimination, the guarantees in
     ERR_BNDS_NORM and ERR_BNDS_COMP may no longer be trustworthy.
[in]RTHRESH
          RTHRESH is DOUBLE PRECISION
     Determines when to stop refinement if the error estimate stops
     decreasing. Refinement will stop when the next solution no longer
     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
     default value is 0.5. For 'aggressive' set to 0.9 to permit
     convergence on extremely ill-conditioned matrices. See LAWN 165
     for more details.
[in]DZ_UB
          DZ_UB is DOUBLE PRECISION
     Determines when to start considering componentwise convergence.
     Componentwise convergence is only considered after each component
     of the solution Y is stable, which we definte as the relative
     change in each component being less than DZ_UB. The default value
     is 0.25, requiring the first bit to be stable. See LAWN 165 for
     more details.
[in]IGNORE_CWISE
          IGNORE_CWISE is LOGICAL
     If .TRUE. then ignore componentwise convergence. Default value
     is .FALSE..
[out]INFO
          INFO is INTEGER
       = 0:  Successful exit.
       < 0:  if INFO = -i, the ith argument to DPOTRS had an illegal
             value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 392 of file dla_porfsx_extended.f.

392 *
393 * -- LAPACK computational routine (version 3.4.2) --
394 * -- LAPACK is a software package provided by Univ. of Tennessee, --
395 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
396 * September 2012
397 *
398 * .. Scalar Arguments ..
399  INTEGER info, lda, ldaf, ldb, ldy, n, nrhs, prec_type,
400  $ n_norms, ithresh
401  CHARACTER uplo
402  LOGICAL colequ, ignore_cwise
403  DOUBLE PRECISION rthresh, dz_ub
404 * ..
405 * .. Array Arguments ..
406  DOUBLE PRECISION a( lda, * ), af( ldaf, * ), b( ldb, * ),
407  $ y( ldy, * ), res( * ), dy( * ), y_tail( * )
408  DOUBLE PRECISION c( * ), ayb(*), rcond, berr_out( * ),
409  $ err_bnds_norm( nrhs, * ),
410  $ err_bnds_comp( nrhs, * )
411 * ..
412 *
413 * =====================================================================
414 *
415 * .. Local Scalars ..
416  INTEGER uplo2, cnt, i, j, x_state, z_state
417  DOUBLE PRECISION yk, dyk, ymin, normy, normx, normdx, dxrat,
418  $ dzrat, prevnormdx, prev_dz_z, dxratmax,
419  $ dzratmax, dx_x, dz_z, final_dx_x, final_dz_z,
420  $ eps, hugeval, incr_thresh
421  LOGICAL incr_prec
422 * ..
423 * .. Parameters ..
424  INTEGER unstable_state, working_state, conv_state,
425  $ noprog_state, y_prec_state, base_residual,
426  $ extra_residual, extra_y
427  parameter ( unstable_state = 0, working_state = 1,
428  $ conv_state = 2, noprog_state = 3 )
429  parameter ( base_residual = 0, extra_residual = 1,
430  $ extra_y = 2 )
431  INTEGER final_nrm_err_i, final_cmp_err_i, berr_i
432  INTEGER rcond_i, nrm_rcond_i, nrm_err_i, cmp_rcond_i
433  INTEGER cmp_err_i, piv_growth_i
434  parameter ( final_nrm_err_i = 1, final_cmp_err_i = 2,
435  $ berr_i = 3 )
436  parameter ( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
437  parameter ( cmp_rcond_i = 7, cmp_err_i = 8,
438  $ piv_growth_i = 9 )
439  INTEGER la_linrx_itref_i, la_linrx_ithresh_i,
440  $ la_linrx_cwise_i
441  parameter ( la_linrx_itref_i = 1,
442  $ la_linrx_ithresh_i = 2 )
443  parameter ( la_linrx_cwise_i = 3 )
444  INTEGER la_linrx_trust_i, la_linrx_err_i,
445  $ la_linrx_rcond_i
446  parameter ( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
447  parameter ( la_linrx_rcond_i = 3 )
448 * ..
449 * .. External Functions ..
450  LOGICAL lsame
451  EXTERNAL ilauplo
452  INTEGER ilauplo
453 * ..
454 * .. External Subroutines ..
455  EXTERNAL daxpy, dcopy, dpotrs, dsymv, blas_dsymv_x,
456  $ blas_dsymv2_x, dla_syamv, dla_wwaddw,
457  $ dla_lin_berr
458  DOUBLE PRECISION dlamch
459 * ..
460 * .. Intrinsic Functions ..
461  INTRINSIC abs, max, min
462 * ..
463 * .. Executable Statements ..
464 *
465  IF (info.NE.0) RETURN
466  eps = dlamch( 'Epsilon' )
467  hugeval = dlamch( 'Overflow' )
468 * Force HUGEVAL to Inf
469  hugeval = hugeval * hugeval
470 * Using HUGEVAL may lead to spurious underflows.
471  incr_thresh = dble( n ) * eps
472 
473  IF ( lsame( uplo, 'L' ) ) THEN
474  uplo2 = ilauplo( 'L' )
475  ELSE
476  uplo2 = ilauplo( 'U' )
477  ENDIF
478 
479  DO j = 1, nrhs
480  y_prec_state = extra_residual
481  IF ( y_prec_state .EQ. extra_y ) THEN
482  DO i = 1, n
483  y_tail( i ) = 0.0d+0
484  END DO
485  END IF
486 
487  dxrat = 0.0d+0
488  dxratmax = 0.0d+0
489  dzrat = 0.0d+0
490  dzratmax = 0.0d+0
491  final_dx_x = hugeval
492  final_dz_z = hugeval
493  prevnormdx = hugeval
494  prev_dz_z = hugeval
495  dz_z = hugeval
496  dx_x = hugeval
497 
498  x_state = working_state
499  z_state = unstable_state
500  incr_prec = .false.
501 
502  DO cnt = 1, ithresh
503 *
504 * Compute residual RES = B_s - op(A_s) * Y,
505 * op(A) = A, A**T, or A**H depending on TRANS (and type).
506 *
507  CALL dcopy( n, b( 1, j ), 1, res, 1 )
508  IF ( y_prec_state .EQ. base_residual ) THEN
509  CALL dsymv( uplo, n, -1.0d+0, a, lda, y(1,j), 1,
510  $ 1.0d+0, res, 1 )
511  ELSE IF ( y_prec_state .EQ. extra_residual ) THEN
512  CALL blas_dsymv_x( uplo2, n, -1.0d+0, a, lda,
513  $ y( 1, j ), 1, 1.0d+0, res, 1, prec_type )
514  ELSE
515  CALL blas_dsymv2_x(uplo2, n, -1.0d+0, a, lda,
516  $ y(1, j), y_tail, 1, 1.0d+0, res, 1, prec_type)
517  END IF
518 
519 ! XXX: RES is no longer needed.
520  CALL dcopy( n, res, 1, dy, 1 )
521  CALL dpotrs( uplo, n, 1, af, ldaf, dy, n, info )
522 *
523 * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
524 *
525  normx = 0.0d+0
526  normy = 0.0d+0
527  normdx = 0.0d+0
528  dz_z = 0.0d+0
529  ymin = hugeval
530 
531  DO i = 1, n
532  yk = abs( y( i, j ) )
533  dyk = abs( dy( i ) )
534 
535  IF ( yk .NE. 0.0d+0 ) THEN
536  dz_z = max( dz_z, dyk / yk )
537  ELSE IF ( dyk .NE. 0.0d+0 ) THEN
538  dz_z = hugeval
539  END IF
540 
541  ymin = min( ymin, yk )
542 
543  normy = max( normy, yk )
544 
545  IF ( colequ ) THEN
546  normx = max( normx, yk * c( i ) )
547  normdx = max( normdx, dyk * c( i ) )
548  ELSE
549  normx = normy
550  normdx = max( normdx, dyk )
551  END IF
552  END DO
553 
554  IF ( normx .NE. 0.0d+0 ) THEN
555  dx_x = normdx / normx
556  ELSE IF ( normdx .EQ. 0.0d+0 ) THEN
557  dx_x = 0.0d+0
558  ELSE
559  dx_x = hugeval
560  END IF
561 
562  dxrat = normdx / prevnormdx
563  dzrat = dz_z / prev_dz_z
564 *
565 * Check termination criteria.
566 *
567  IF ( ymin*rcond .LT. incr_thresh*normy
568  $ .AND. y_prec_state .LT. extra_y )
569  $ incr_prec = .true.
570 
571  IF ( x_state .EQ. noprog_state .AND. dxrat .LE. rthresh )
572  $ x_state = working_state
573  IF ( x_state .EQ. working_state ) THEN
574  IF ( dx_x .LE. eps ) THEN
575  x_state = conv_state
576  ELSE IF ( dxrat .GT. rthresh ) THEN
577  IF ( y_prec_state .NE. extra_y ) THEN
578  incr_prec = .true.
579  ELSE
580  x_state = noprog_state
581  END IF
582  ELSE
583  IF ( dxrat .GT. dxratmax ) dxratmax = dxrat
584  END IF
585  IF ( x_state .GT. working_state ) final_dx_x = dx_x
586  END IF
587 
588  IF ( z_state .EQ. unstable_state .AND. dz_z .LE. dz_ub )
589  $ z_state = working_state
590  IF ( z_state .EQ. noprog_state .AND. dzrat .LE. rthresh )
591  $ z_state = working_state
592  IF ( z_state .EQ. working_state ) THEN
593  IF ( dz_z .LE. eps ) THEN
594  z_state = conv_state
595  ELSE IF ( dz_z .GT. dz_ub ) THEN
596  z_state = unstable_state
597  dzratmax = 0.0d+0
598  final_dz_z = hugeval
599  ELSE IF ( dzrat .GT. rthresh ) THEN
600  IF ( y_prec_state .NE. extra_y ) THEN
601  incr_prec = .true.
602  ELSE
603  z_state = noprog_state
604  END IF
605  ELSE
606  IF ( dzrat .GT. dzratmax ) dzratmax = dzrat
607  END IF
608  IF ( z_state .GT. working_state ) final_dz_z = dz_z
609  END IF
610 
611  IF ( x_state.NE.working_state.AND.
612  $ ( ignore_cwise.OR.z_state.NE.working_state ) )
613  $ GOTO 666
614 
615  IF ( incr_prec ) THEN
616  incr_prec = .false.
617  y_prec_state = y_prec_state + 1
618  DO i = 1, n
619  y_tail( i ) = 0.0d+0
620  END DO
621  END IF
622 
623  prevnormdx = normdx
624  prev_dz_z = dz_z
625 *
626 * Update soluton.
627 *
628  IF (y_prec_state .LT. extra_y) THEN
629  CALL daxpy( n, 1.0d+0, dy, 1, y(1,j), 1 )
630  ELSE
631  CALL dla_wwaddw( n, y( 1, j ), y_tail, dy )
632  END IF
633 
634  END DO
635 * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
636  666 CONTINUE
637 *
638 * Set final_* when cnt hits ithresh.
639 *
640  IF ( x_state .EQ. working_state ) final_dx_x = dx_x
641  IF ( z_state .EQ. working_state ) final_dz_z = dz_z
642 *
643 * Compute error bounds.
644 *
645  IF ( n_norms .GE. 1 ) THEN
646  err_bnds_norm( j, la_linrx_err_i ) =
647  $ final_dx_x / (1 - dxratmax)
648  END IF
649  IF ( n_norms .GE. 2 ) THEN
650  err_bnds_comp( j, la_linrx_err_i ) =
651  $ final_dz_z / (1 - dzratmax)
652  END IF
653 *
654 * Compute componentwise relative backward error from formula
655 * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
656 * where abs(Z) is the componentwise absolute value of the matrix
657 * or vector Z.
658 *
659 * Compute residual RES = B_s - op(A_s) * Y,
660 * op(A) = A, A**T, or A**H depending on TRANS (and type).
661 *
662  CALL dcopy( n, b( 1, j ), 1, res, 1 )
663  CALL dsymv( uplo, n, -1.0d+0, a, lda, y(1,j), 1, 1.0d+0, res,
664  $ 1 )
665 
666  DO i = 1, n
667  ayb( i ) = abs( b( i, j ) )
668  END DO
669 *
670 * Compute abs(op(A_s))*abs(Y) + abs(B_s).
671 *
672  CALL dla_syamv( uplo2, n, 1.0d+0,
673  $ a, lda, y(1, j), 1, 1.0d+0, ayb, 1 )
674 
675  CALL dla_lin_berr( n, n, 1, res, ayb, berr_out( j ) )
676 *
677 * End of loop for each RHS.
678 *
679  END DO
680 *
681  RETURN
subroutine dcopy(N, DX, INCX, DY, INCY)
DCOPY
Definition: dcopy.f:53
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine dla_lin_berr(N, NZ, NRHS, RES, AYB, BERR)
DLA_LIN_BERR computes a component-wise relative backward error.
Definition: dla_lin_berr.f:103
subroutine daxpy(N, DA, DX, INCX, DY, INCY)
DAXPY
Definition: daxpy.f:54
subroutine dpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
DPOTRS
Definition: dpotrs.f:112
integer function ilauplo(UPLO)
ILAUPLO
Definition: ilauplo.f:60
subroutine dla_wwaddw(N, X, Y, W)
DLA_WWADDW adds a vector into a doubled-single vector.
Definition: dla_wwaddw.f:83
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine dla_syamv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
DLA_SYAMV computes a matrix-vector product using a symmetric indefinite matrix to calculate error bou...
Definition: dla_syamv.f:179
subroutine dsymv(UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
DSYMV
Definition: dsymv.f:154

Here is the call graph for this function:

Here is the caller graph for this function: