LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine zsptrf ( character  UPLO,
integer  N,
complex*16, dimension( * )  AP,
integer, dimension( * )  IPIV,
integer  INFO 
)

ZSPTRF

Download ZSPTRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZSPTRF computes the factorization of a complex symmetric matrix A
 stored in packed format using the Bunch-Kaufman diagonal pivoting
 method:

    A = U*D*U**T  or  A = L*D*L**T

 where U (or L) is a product of permutation and unit upper (lower)
 triangular matrices, and D is symmetric and block diagonal with
 1-by-1 and 2-by-2 diagonal blocks.
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in,out]AP
          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.

          On exit, the block diagonal matrix D and the multipliers used
          to obtain the factor U or L, stored as a packed triangular
          matrix overwriting A (see below for further details).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular, and division by zero will occur if it
               is used to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011
Further Details:
  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
         Company

  If UPLO = 'U', then A = U*D*U**T, where
     U = P(n)*U(n)* ... *P(k)U(k)* ...,
  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    v    0   )   k-s
     U(k) =  (   0    I    0   )   s
             (   0    0    I   )   n-k
                k-s   s   n-k

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  and A(k,k), and v overwrites A(1:k-2,k-1:k).

  If UPLO = 'L', then A = L*D*L**T, where
     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  that if the diagonal block D(k) is of order s (s = 1 or 2), then

             (   I    0     0   )  k-1
     L(k) =  (   0    I     0   )  s
             (   0    v     I   )  n-k-s+1
                k-1   s  n-k-s+1

  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

Definition at line 160 of file zsptrf.f.

160 *
161 * -- LAPACK computational routine (version 3.4.0) --
162 * -- LAPACK is a software package provided by Univ. of Tennessee, --
163 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
164 * November 2011
165 *
166 * .. Scalar Arguments ..
167  CHARACTER uplo
168  INTEGER info, n
169 * ..
170 * .. Array Arguments ..
171  INTEGER ipiv( * )
172  COMPLEX*16 ap( * )
173 * ..
174 *
175 * =====================================================================
176 *
177 * .. Parameters ..
178  DOUBLE PRECISION zero, one
179  parameter ( zero = 0.0d+0, one = 1.0d+0 )
180  DOUBLE PRECISION eight, sevten
181  parameter ( eight = 8.0d+0, sevten = 17.0d+0 )
182  COMPLEX*16 cone
183  parameter ( cone = ( 1.0d+0, 0.0d+0 ) )
184 * ..
185 * .. Local Scalars ..
186  LOGICAL upper
187  INTEGER i, imax, j, jmax, k, kc, kk, knc, kp, kpc,
188  $ kstep, kx, npp
189  DOUBLE PRECISION absakk, alpha, colmax, rowmax
190  COMPLEX*16 d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, zdum
191 * ..
192 * .. External Functions ..
193  LOGICAL lsame
194  INTEGER izamax
195  EXTERNAL lsame, izamax
196 * ..
197 * .. External Subroutines ..
198  EXTERNAL xerbla, zscal, zspr, zswap
199 * ..
200 * .. Intrinsic Functions ..
201  INTRINSIC abs, dble, dimag, max, sqrt
202 * ..
203 * .. Statement Functions ..
204  DOUBLE PRECISION cabs1
205 * ..
206 * .. Statement Function definitions ..
207  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
208 * ..
209 * .. Executable Statements ..
210 *
211 * Test the input parameters.
212 *
213  info = 0
214  upper = lsame( uplo, 'U' )
215  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
216  info = -1
217  ELSE IF( n.LT.0 ) THEN
218  info = -2
219  END IF
220  IF( info.NE.0 ) THEN
221  CALL xerbla( 'ZSPTRF', -info )
222  RETURN
223  END IF
224 *
225 * Initialize ALPHA for use in choosing pivot block size.
226 *
227  alpha = ( one+sqrt( sevten ) ) / eight
228 *
229  IF( upper ) THEN
230 *
231 * Factorize A as U*D*U**T using the upper triangle of A
232 *
233 * K is the main loop index, decreasing from N to 1 in steps of
234 * 1 or 2
235 *
236  k = n
237  kc = ( n-1 )*n / 2 + 1
238  10 CONTINUE
239  knc = kc
240 *
241 * If K < 1, exit from loop
242 *
243  IF( k.LT.1 )
244  $ GO TO 110
245  kstep = 1
246 *
247 * Determine rows and columns to be interchanged and whether
248 * a 1-by-1 or 2-by-2 pivot block will be used
249 *
250  absakk = cabs1( ap( kc+k-1 ) )
251 *
252 * IMAX is the row-index of the largest off-diagonal element in
253 * column K, and COLMAX is its absolute value
254 *
255  IF( k.GT.1 ) THEN
256  imax = izamax( k-1, ap( kc ), 1 )
257  colmax = cabs1( ap( kc+imax-1 ) )
258  ELSE
259  colmax = zero
260  END IF
261 *
262  IF( max( absakk, colmax ).EQ.zero ) THEN
263 *
264 * Column K is zero: set INFO and continue
265 *
266  IF( info.EQ.0 )
267  $ info = k
268  kp = k
269  ELSE
270  IF( absakk.GE.alpha*colmax ) THEN
271 *
272 * no interchange, use 1-by-1 pivot block
273 *
274  kp = k
275  ELSE
276 *
277  rowmax = zero
278  jmax = imax
279  kx = imax*( imax+1 ) / 2 + imax
280  DO 20 j = imax + 1, k
281  IF( cabs1( ap( kx ) ).GT.rowmax ) THEN
282  rowmax = cabs1( ap( kx ) )
283  jmax = j
284  END IF
285  kx = kx + j
286  20 CONTINUE
287  kpc = ( imax-1 )*imax / 2 + 1
288  IF( imax.GT.1 ) THEN
289  jmax = izamax( imax-1, ap( kpc ), 1 )
290  rowmax = max( rowmax, cabs1( ap( kpc+jmax-1 ) ) )
291  END IF
292 *
293  IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
294 *
295 * no interchange, use 1-by-1 pivot block
296 *
297  kp = k
298  ELSE IF( cabs1( ap( kpc+imax-1 ) ).GE.alpha*rowmax ) THEN
299 *
300 * interchange rows and columns K and IMAX, use 1-by-1
301 * pivot block
302 *
303  kp = imax
304  ELSE
305 *
306 * interchange rows and columns K-1 and IMAX, use 2-by-2
307 * pivot block
308 *
309  kp = imax
310  kstep = 2
311  END IF
312  END IF
313 *
314  kk = k - kstep + 1
315  IF( kstep.EQ.2 )
316  $ knc = knc - k + 1
317  IF( kp.NE.kk ) THEN
318 *
319 * Interchange rows and columns KK and KP in the leading
320 * submatrix A(1:k,1:k)
321 *
322  CALL zswap( kp-1, ap( knc ), 1, ap( kpc ), 1 )
323  kx = kpc + kp - 1
324  DO 30 j = kp + 1, kk - 1
325  kx = kx + j - 1
326  t = ap( knc+j-1 )
327  ap( knc+j-1 ) = ap( kx )
328  ap( kx ) = t
329  30 CONTINUE
330  t = ap( knc+kk-1 )
331  ap( knc+kk-1 ) = ap( kpc+kp-1 )
332  ap( kpc+kp-1 ) = t
333  IF( kstep.EQ.2 ) THEN
334  t = ap( kc+k-2 )
335  ap( kc+k-2 ) = ap( kc+kp-1 )
336  ap( kc+kp-1 ) = t
337  END IF
338  END IF
339 *
340 * Update the leading submatrix
341 *
342  IF( kstep.EQ.1 ) THEN
343 *
344 * 1-by-1 pivot block D(k): column k now holds
345 *
346 * W(k) = U(k)*D(k)
347 *
348 * where U(k) is the k-th column of U
349 *
350 * Perform a rank-1 update of A(1:k-1,1:k-1) as
351 *
352 * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
353 *
354  r1 = cone / ap( kc+k-1 )
355  CALL zspr( uplo, k-1, -r1, ap( kc ), 1, ap )
356 *
357 * Store U(k) in column k
358 *
359  CALL zscal( k-1, r1, ap( kc ), 1 )
360  ELSE
361 *
362 * 2-by-2 pivot block D(k): columns k and k-1 now hold
363 *
364 * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
365 *
366 * where U(k) and U(k-1) are the k-th and (k-1)-th columns
367 * of U
368 *
369 * Perform a rank-2 update of A(1:k-2,1:k-2) as
370 *
371 * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
372 * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
373 *
374  IF( k.GT.2 ) THEN
375 *
376  d12 = ap( k-1+( k-1 )*k / 2 )
377  d22 = ap( k-1+( k-2 )*( k-1 ) / 2 ) / d12
378  d11 = ap( k+( k-1 )*k / 2 ) / d12
379  t = cone / ( d11*d22-cone )
380  d12 = t / d12
381 *
382  DO 50 j = k - 2, 1, -1
383  wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2 )-
384  $ ap( j+( k-1 )*k / 2 ) )
385  wk = d12*( d22*ap( j+( k-1 )*k / 2 )-
386  $ ap( j+( k-2 )*( k-1 ) / 2 ) )
387  DO 40 i = j, 1, -1
388  ap( i+( j-1 )*j / 2 ) = ap( i+( j-1 )*j / 2 ) -
389  $ ap( i+( k-1 )*k / 2 )*wk -
390  $ ap( i+( k-2 )*( k-1 ) / 2 )*wkm1
391  40 CONTINUE
392  ap( j+( k-1 )*k / 2 ) = wk
393  ap( j+( k-2 )*( k-1 ) / 2 ) = wkm1
394  50 CONTINUE
395 *
396  END IF
397  END IF
398  END IF
399 *
400 * Store details of the interchanges in IPIV
401 *
402  IF( kstep.EQ.1 ) THEN
403  ipiv( k ) = kp
404  ELSE
405  ipiv( k ) = -kp
406  ipiv( k-1 ) = -kp
407  END IF
408 *
409 * Decrease K and return to the start of the main loop
410 *
411  k = k - kstep
412  kc = knc - k
413  GO TO 10
414 *
415  ELSE
416 *
417 * Factorize A as L*D*L**T using the lower triangle of A
418 *
419 * K is the main loop index, increasing from 1 to N in steps of
420 * 1 or 2
421 *
422  k = 1
423  kc = 1
424  npp = n*( n+1 ) / 2
425  60 CONTINUE
426  knc = kc
427 *
428 * If K > N, exit from loop
429 *
430  IF( k.GT.n )
431  $ GO TO 110
432  kstep = 1
433 *
434 * Determine rows and columns to be interchanged and whether
435 * a 1-by-1 or 2-by-2 pivot block will be used
436 *
437  absakk = cabs1( ap( kc ) )
438 *
439 * IMAX is the row-index of the largest off-diagonal element in
440 * column K, and COLMAX is its absolute value
441 *
442  IF( k.LT.n ) THEN
443  imax = k + izamax( n-k, ap( kc+1 ), 1 )
444  colmax = cabs1( ap( kc+imax-k ) )
445  ELSE
446  colmax = zero
447  END IF
448 *
449  IF( max( absakk, colmax ).EQ.zero ) THEN
450 *
451 * Column K is zero: set INFO and continue
452 *
453  IF( info.EQ.0 )
454  $ info = k
455  kp = k
456  ELSE
457  IF( absakk.GE.alpha*colmax ) THEN
458 *
459 * no interchange, use 1-by-1 pivot block
460 *
461  kp = k
462  ELSE
463 *
464 * JMAX is the column-index of the largest off-diagonal
465 * element in row IMAX, and ROWMAX is its absolute value
466 *
467  rowmax = zero
468  kx = kc + imax - k
469  DO 70 j = k, imax - 1
470  IF( cabs1( ap( kx ) ).GT.rowmax ) THEN
471  rowmax = cabs1( ap( kx ) )
472  jmax = j
473  END IF
474  kx = kx + n - j
475  70 CONTINUE
476  kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2 + 1
477  IF( imax.LT.n ) THEN
478  jmax = imax + izamax( n-imax, ap( kpc+1 ), 1 )
479  rowmax = max( rowmax, cabs1( ap( kpc+jmax-imax ) ) )
480  END IF
481 *
482  IF( absakk.GE.alpha*colmax*( colmax / rowmax ) ) THEN
483 *
484 * no interchange, use 1-by-1 pivot block
485 *
486  kp = k
487  ELSE IF( cabs1( ap( kpc ) ).GE.alpha*rowmax ) THEN
488 *
489 * interchange rows and columns K and IMAX, use 1-by-1
490 * pivot block
491 *
492  kp = imax
493  ELSE
494 *
495 * interchange rows and columns K+1 and IMAX, use 2-by-2
496 * pivot block
497 *
498  kp = imax
499  kstep = 2
500  END IF
501  END IF
502 *
503  kk = k + kstep - 1
504  IF( kstep.EQ.2 )
505  $ knc = knc + n - k + 1
506  IF( kp.NE.kk ) THEN
507 *
508 * Interchange rows and columns KK and KP in the trailing
509 * submatrix A(k:n,k:n)
510 *
511  IF( kp.LT.n )
512  $ CALL zswap( n-kp, ap( knc+kp-kk+1 ), 1, ap( kpc+1 ),
513  $ 1 )
514  kx = knc + kp - kk
515  DO 80 j = kk + 1, kp - 1
516  kx = kx + n - j + 1
517  t = ap( knc+j-kk )
518  ap( knc+j-kk ) = ap( kx )
519  ap( kx ) = t
520  80 CONTINUE
521  t = ap( knc )
522  ap( knc ) = ap( kpc )
523  ap( kpc ) = t
524  IF( kstep.EQ.2 ) THEN
525  t = ap( kc+1 )
526  ap( kc+1 ) = ap( kc+kp-k )
527  ap( kc+kp-k ) = t
528  END IF
529  END IF
530 *
531 * Update the trailing submatrix
532 *
533  IF( kstep.EQ.1 ) THEN
534 *
535 * 1-by-1 pivot block D(k): column k now holds
536 *
537 * W(k) = L(k)*D(k)
538 *
539 * where L(k) is the k-th column of L
540 *
541  IF( k.LT.n ) THEN
542 *
543 * Perform a rank-1 update of A(k+1:n,k+1:n) as
544 *
545 * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
546 *
547  r1 = cone / ap( kc )
548  CALL zspr( uplo, n-k, -r1, ap( kc+1 ), 1,
549  $ ap( kc+n-k+1 ) )
550 *
551 * Store L(k) in column K
552 *
553  CALL zscal( n-k, r1, ap( kc+1 ), 1 )
554  END IF
555  ELSE
556 *
557 * 2-by-2 pivot block D(k): columns K and K+1 now hold
558 *
559 * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
560 *
561 * where L(k) and L(k+1) are the k-th and (k+1)-th columns
562 * of L
563 *
564  IF( k.LT.n-1 ) THEN
565 *
566 * Perform a rank-2 update of A(k+2:n,k+2:n) as
567 *
568 * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
569 * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
570 *
571 * where L(k) and L(k+1) are the k-th and (k+1)-th
572 * columns of L
573 *
574  d21 = ap( k+1+( k-1 )*( 2*n-k ) / 2 )
575  d11 = ap( k+1+k*( 2*n-k-1 ) / 2 ) / d21
576  d22 = ap( k+( k-1 )*( 2*n-k ) / 2 ) / d21
577  t = cone / ( d11*d22-cone )
578  d21 = t / d21
579 *
580  DO 100 j = k + 2, n
581  wk = d21*( d11*ap( j+( k-1 )*( 2*n-k ) / 2 )-
582  $ ap( j+k*( 2*n-k-1 ) / 2 ) )
583  wkp1 = d21*( d22*ap( j+k*( 2*n-k-1 ) / 2 )-
584  $ ap( j+( k-1 )*( 2*n-k ) / 2 ) )
585  DO 90 i = j, n
586  ap( i+( j-1 )*( 2*n-j ) / 2 ) = ap( i+( j-1 )*
587  $ ( 2*n-j ) / 2 ) - ap( i+( k-1 )*( 2*n-k ) /
588  $ 2 )*wk - ap( i+k*( 2*n-k-1 ) / 2 )*wkp1
589  90 CONTINUE
590  ap( j+( k-1 )*( 2*n-k ) / 2 ) = wk
591  ap( j+k*( 2*n-k-1 ) / 2 ) = wkp1
592  100 CONTINUE
593  END IF
594  END IF
595  END IF
596 *
597 * Store details of the interchanges in IPIV
598 *
599  IF( kstep.EQ.1 ) THEN
600  ipiv( k ) = kp
601  ELSE
602  ipiv( k ) = -kp
603  ipiv( k+1 ) = -kp
604  END IF
605 *
606 * Increase K and return to the start of the main loop
607 *
608  k = k + kstep
609  kc = knc + n - k + 2
610  GO TO 60
611 *
612  END IF
613 *
614  110 CONTINUE
615  RETURN
616 *
617 * End of ZSPTRF
618 *
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:52
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
integer function izamax(N, ZX, INCX)
IZAMAX
Definition: izamax.f:53
subroutine zspr(UPLO, N, ALPHA, X, INCX, AP)
ZSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix. ...
Definition: zspr.f:134
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:55
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:54

Here is the call graph for this function:

Here is the caller graph for this function: