LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cungl2 ( integer  M,
integer  N,
integer  K,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( * )  TAU,
complex, dimension( * )  WORK,
integer  INFO 
)

CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm).

Download CUNGL2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
 which is defined as the first m rows of a product of k elementary
 reflectors of order n

       Q  =  H(k)**H . . . H(2)**H H(1)**H

 as returned by CGELQF.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix Q. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix Q. N >= M.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines the
          matrix Q. M >= K >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the i-th row must contain the vector which defines
          the elementary reflector H(i), for i = 1,2,...,k, as returned
          by CGELQF in the first k rows of its array argument A.
          On exit, the m by n matrix Q.
[in]LDA
          LDA is INTEGER
          The first dimension of the array A. LDA >= max(1,M).
[in]TAU
          TAU is COMPLEX array, dimension (K)
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i), as returned by CGELQF.
[out]WORK
          WORK is COMPLEX array, dimension (M)
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument has an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 115 of file cungl2.f.

115 *
116 * -- LAPACK computational routine (version 3.4.2) --
117 * -- LAPACK is a software package provided by Univ. of Tennessee, --
118 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
119 * September 2012
120 *
121 * .. Scalar Arguments ..
122  INTEGER info, k, lda, m, n
123 * ..
124 * .. Array Arguments ..
125  COMPLEX a( lda, * ), tau( * ), work( * )
126 * ..
127 *
128 * =====================================================================
129 *
130 * .. Parameters ..
131  COMPLEX one, zero
132  parameter ( one = ( 1.0e+0, 0.0e+0 ),
133  $ zero = ( 0.0e+0, 0.0e+0 ) )
134 * ..
135 * .. Local Scalars ..
136  INTEGER i, j, l
137 * ..
138 * .. External Subroutines ..
139  EXTERNAL clacgv, clarf, cscal, xerbla
140 * ..
141 * .. Intrinsic Functions ..
142  INTRINSIC conjg, max
143 * ..
144 * .. Executable Statements ..
145 *
146 * Test the input arguments
147 *
148  info = 0
149  IF( m.LT.0 ) THEN
150  info = -1
151  ELSE IF( n.LT.m ) THEN
152  info = -2
153  ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
154  info = -3
155  ELSE IF( lda.LT.max( 1, m ) ) THEN
156  info = -5
157  END IF
158  IF( info.NE.0 ) THEN
159  CALL xerbla( 'CUNGL2', -info )
160  RETURN
161  END IF
162 *
163 * Quick return if possible
164 *
165  IF( m.LE.0 )
166  $ RETURN
167 *
168  IF( k.LT.m ) THEN
169 *
170 * Initialise rows k+1:m to rows of the unit matrix
171 *
172  DO 20 j = 1, n
173  DO 10 l = k + 1, m
174  a( l, j ) = zero
175  10 CONTINUE
176  IF( j.GT.k .AND. j.LE.m )
177  $ a( j, j ) = one
178  20 CONTINUE
179  END IF
180 *
181  DO 40 i = k, 1, -1
182 *
183 * Apply H(i)**H to A(i:m,i:n) from the right
184 *
185  IF( i.LT.n ) THEN
186  CALL clacgv( n-i, a( i, i+1 ), lda )
187  IF( i.LT.m ) THEN
188  a( i, i ) = one
189  CALL clarf( 'Right', m-i, n-i+1, a( i, i ), lda,
190  $ conjg( tau( i ) ), a( i+1, i ), lda, work )
191  END IF
192  CALL cscal( n-i, -tau( i ), a( i, i+1 ), lda )
193  CALL clacgv( n-i, a( i, i+1 ), lda )
194  END IF
195  a( i, i ) = one - conjg( tau( i ) )
196 *
197 * Set A(i,1:i-1,i) to zero
198 *
199  DO 30 l = 1, i - 1
200  a( i, l ) = zero
201  30 CONTINUE
202  40 CONTINUE
203  RETURN
204 *
205 * End of CUNGL2
206 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:54
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:130
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:76

Here is the call graph for this function:

Here is the caller graph for this function: